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Abstract 

Long-read sequencing data, particularly those derived from the Oxford Nanopore 
sequencing platform, tend to exhibit high error rates. Here, we present NextDenovo, 
an efficient error correction and assembly tool for noisy long reads, which achieves 
a high level of accuracy in genome assembly. We apply NextDenovo to assemble 35 
diverse human genomes from around the world using Nanopore long-read data. These 
genomes allow us to identify the landscape of segmental duplication and gene copy 
number variation in modern human populations. The use of NextDenovo should pave 
the way for population-scale long-read assembly using Nanopore long-read data.
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Background
An accurate and complete genome is a prerequisite for studying the evolution of spe-
cies. Third-generation long-read sequencing platforms, such as PacBio single-molecule 
real-time (SMRT) [1] and Oxford Nanopore (ONT) [2], promise to overcome the chal-
lenges that are inherent to short-read sequencing and have the potential to resolve most 
complex and repetitive genomic regions. To this end, they have become the mainstream 
method of sequencing for genome assembly. The high-fidelity (HiFi) reads recently pro-
duced by PacBio display superior performance to de novo assembly [3–5]. However, 
they generally have an average length of ~ 15 kilobases (kb) and hence are unable to span 
long tandem or highly homologous multi-copy repeats, which occur widely throughout 
large genomes, but very specifically in some regions such as centromeres [3, 6]. ONT 
sequencing can generate > 100-kb “ultra-long” reads, which can be used to fill the final 
gaps of an assembly, most of which are located in these regions [7, 8]. This approach was 
first used successfully in the assembly of a human centromere (chromosome Y) [9] and 
an entire chromosome (chromosome X) [10] and was then combined with HiFi data to 
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assemble a complete human genome [8]. Despite these successes, a single linear refer-
ence genome is insufficient to represent the entire genome sequence of a species, and 
there is an urgent need to construct pan-genomes for population genome studies [11–
13]. ONT sequencing is characterized by lower cost, higher throughput, and a faster 
turnaround time than PacBio HiFi sequencing, and since it requires less genomic DNA, 
it can be used anywhere for sampling and sequencing by portable devices. It is therefore 
ideally suited for pan-genome projects, especially those with limited budgets or urgent 
deadlines.

For genome assembly from noisy long ONT reads, two commonly used strategies have 
been employed, viz. “correction then assembly” (CTA, an assembler first corrects errors 
in the reads and then uses the corrected reads for assembly) and “assembly then cor-
rection” (ATC, an assembler uses error-prone reads to assemble the genome and then 
corrects errors in the assembled genome); the former (such as Necat [14] and Canu [15]) 
is usually slower than the latter (such as Wtdbg2 [16] and Flye [17]), because read-level 
error correction requires much more computational resources than contig-level pol-
ishing (a step to correct errors in the assembly). However, in terms of the assembly of 
segmental duplications/repeats, and especially for large plant genome assemblies, the 
CTA-based strategy usually has an enhanced ability to distinguish different gene copies 
and produce more accurate and continuous assemblies [14, 15, 18].

Here, we present NextDenovo, a highly efficient error correction and CTA-based 
assembly tool for noisy long reads. We first provide an overview of the NextDenovo 
pipeline and then compare it to other error correction and assembly tools using four 
non-human genomes and 35 human genomes. We show that NextDenovo represents an 
optimal choice for error correction and genome assembly when working with noisy long 
reads, especially for large repeat-rich genomes.

Results
Overview of the NextDenovo pipeline

As with other CTA assemblers, NextDenovo first detects the overlapping reads (Fig. 1A), 
then filters out the alignments caused by repeats, and finally splits the chimeric seeds 
based on the overlapping depth (Fig. 1B). NextDenovo employs the Kmer score chain 
(KSC) algorithm which was used by our previously published polisher tool, NextPolish 
[19], to perform the initial rough correction (Fig. 1C). Repeated regions typically contain 
numerous noisy or incorrect overlap alignments. These regions are usually character-
ized by lower accuracy after the initial correction, but they are nonetheless important 
for distinguishing different duplicates during the subsequent graph cleaning procedure. 
Therefore, NextDenovo used a heuristic algorithm to detect these low-score regions 
(LSRs) during the traceback procedure within the KSC algorithm. For the LSRs, a more 
accurate algorithm, derived by combining the partial order alignment (POA) [20] and 
KSC, was used. In detail, each subsequence spanning an LSR was collected, and a kmer 
set at the flanking sequences of this LSR was generated. Then, each subsequence was 
assigned a matched kmer score based on this kmer set. Subsequences with a lower kmer 
score (mainly caused by heterozygosity or repeats) were filtered out. The six longest sub-
sequences ranked by kmer score were used to produce a pseudo-LSR seed by a greedy 
POA consensus algorithm. All pseudo-LSR seeds from the same seed were linked as 
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the reference, all subsequences from this seed were mapped to this reference, and the 
KSC algorithm was applied again to produce a corrected pseudo seed. This procedure 
was called multiple times to improve the accuracy of the LSRs. Finally, each LSR was 

Fig. 1  NextDenovo pipeline. A Overlapping reads. B Alignments erroneously caused by repeats were filtered 
out and chimeric reads were split. C A confidence score was calculated for a given allele at each position 
with a fixed 3-mer, and the allele with the maximum score was selected as the correct base. The colored 
rectangles represent the different bases. D NextDenovo first identifies all LSRs at the raw reads, extracts 
each subsequence spanning these LSRs, and assigns a kmer score to each subsequence. Subsequently, 
NextDenovo filters out the subsequences with lower scores and produces a pseudo-LSR seed using a 
greedy POA consensus algorithm, all pseudo-LSR seeds from the same seed being linked as the reference, 
and all subsequences being mapped to this reference while the KSC algorithm is reapplied to produce a 
corrected pseudo seed. Then, the corrected LSRs are inserted into the corresponding positions in the raw 
reads to generate the final corrected reads. E NextDenovo calculates dovetail alignments by two rounds 
of overlapping, constructs an assembly graph, removes transitive edges, tips, bubbles, and edges with 
low scores, and generates contigs. Finally, NextDenovo maps all seeds to contigs and breaks a contig if it 
possesses low-quality regions
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extracted from the corrected pseudo seed and inserted into the corresponding position 
of the primary corrected seed as the final corrected seeds (Fig. 1D).

The corrected seeds were subjected to two rounds of pairwise overlapping to iden-
tify dovetail alignments (two reads overlapping each other in an end-to-end fashion). 
The first round used an efficacious parameter set designed to rapidly detect candidate 
dovetail alignments, which usually contain incorrect alignments or imprecise alignment 
boundaries. Thus, for these candidate dovetail alignments, a rigorous parameter set 
was used to produce more accurate alignments. Next, a directed string graph was con-
structed and transitive edges were removed as with most existing assemblers (if there 
are edges from A to B, B to C, and A to C, then the edge from A to C is removed from 
the graph as it can be inferred from the edges between A to B and B to C). We used 
the “best overlap graph” (BOG) algorithm to remove edges for non-repeat nodes (repeat 
nodes were defined as nodes with indegree or outdegree larger than a threshold). For 
repeated nodes, we found that the BOG algorithm typically removes the corrected edges 
and breaks the graph connectivity. To fix this problem, we only removed a repeat edge if 
its alignment identity, length, and transitive score (see the “ Methods” section) were less 
than their corresponding thresholds. Subsequently, the tips were removed and the bub-
bles were resolved. Finally, the graph usually contained some linear paths (no branches 
and repeated nodes) connecting some complex subgraphs that contained many repeat 
nodes. We used a greedy progressive graph cleaning strategy to simplify these complex 
subgraphs, that is, a series of increasingly stringent thresholds were used to filter edges 
while maintaining connectivity between incoming and outgoing nodes. Finally, all paths 
were broken at the node connected with multi-paths, and the contigs were output from 
these broken linear paths. To further reduce the possibility of misassemblies, we mapped 
all seeds to the contigs and broke a contig at the connection point between two nodes if 
it had a lower mapping depth region (LDR) (Fig. 1E).

Benchmarking the error correction module

Error correction is a crucial step for the CTA assembler. Therefore, we benchmarked the 
error correction performance (including correction speed, corrected data size, error rate 
and chimeric reads rate of corrected reads) of NextDenovo against Consent (v2.2.2) [21], 
Canu (v2.0), and Necat (v0.0.1) using simulated data and real biological data based on 
chromosome one of the human CHM13 genome (Table 1, Additional file 1: Table S1) [8].

In terms of the correction speed, NextDenovo demonstrated impressive performance, 
being 3.00, 7.44, and 1.13 times faster on simulated data and 9.51, 69.25, and 1.63 times 
faster on real data compared to Consent, Canu, and Necat, respectively. It is essential to 
note that the differences between simulated data and real data are primarily attributed to 
the latter being comprised of ONT “ultra-long” reads, the reads to be corrected having 
an average length of 91.21 kb, 3.99 times longer than the simulated data.

We conducted additional tests by simulating reads of varying lengths and correct-
ing them using NextDenovo, Canu, and Necat (we were not successful in running 
Consent on these datasets). Interestingly, our findings revealed that as the read length 
increases, the time required for correction also increases. However, NextDenovo and 
Necat demonstrated only slight increases, while Canu exhibited a significant increase 
in processing time (Additional file  1: Table  S2). Regarding the corrected data size, 
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NextDenovo corrected 2.21% and 4.54% more data than Canu, but 1.65% and 1.25% 
and 1.00% and 2.05% fewer data than Necat and Consent, on simulated data and 
actual biological data, respectively. Further examination unveiled that about 0.93% of 
simulated reads and 2.36% of real biological reads could be corrected by either Canu 
or Consent, but not by NextDenovo (Additional file  1: Fig. S1). It is imperative to 
highlight that within this subset of uncorrected reads, 99.98% of simulated reads and 
99.08% of real biological reads cannot be completely mapped to the reference genome 
(≥ 80% coverage). This indicates that the majority of these uncorrected reads were 
of extremely low quality or chimeric and were filtered out by NextDenovo to pre-
vent any adverse effects on the subsequent assembly graph construction. Importantly, 
NextDenovo achieves an average error rate of 1.82% and 1.31% lower than Canu and 
0.35% and 0.09% lower than Necat on simulated and real biological data, respectively, 
while Consent is found to perform well on simulated data but poorly on real data. 
It is worth mentioning that the average accuracy of corrected reads by NextDenovo 
exceeded 99%, closely matching the accuracy of the PacBio HiFi reads, whereas they 
are much longer than HiFi reads. Furthermore, a consistent error rate within the cor-
rected reads is essential for subsequent graph cleaning procedures, as read align-
ment identities can be used to distinguish ambiguous edges in the assembly graph, 
especially when these edges are from different duplicates. Compared to simulated 
data, we found that the ONT reads from the real biological data tend to have higher 
errors in certain regions that NextDenovo can identify as LSRs. Benefitting from 
the heuristic algorithm that correct the LSRs with multiple iterations, NextDenovo 
produced ~ 89.31% of the corrected reads that have an accuracy of ≥ 97%, while the 
comparable figures were only 80.64% for Canu, 83.11% for Consent, 88.67% for Necat, 
and 0.18% for the raw data. Chimeric reads usually hinder assembly graph construc-
tion, resulting in misconnections and incorrect assembly results. NextDenovo can 

Table 1  Statistics of ONT read error correction

Only the primary alignments defined by minimap2 of each read were used for evaluation. Corrected base rate is the ratio of 
the size of the corrected reads to the size of the raw reads to be corrected. Reads with chimeric alignments are defined as 
reads that have supplementary alignments. Average error rate only uses the reads that are mapped with ≥ 80% coverage. 
All the software was tested on the same computer with 32 CPUs and 252 GB RAM of memory. Best results for each metric 
are highlighted in bold

Source Software Corrected 
bases rate 
(%)

Average 
length 
(bp)

Max 
length 
(bp)

Reads with 
chimeric 
alignments 
(%)

Mapped 
with >  = 99% 
coverage (%)

Mapped 
with >  = 97% 
identity (%)

Average 
error 
rate (%)

Wall 
clock 
time 
(hour)

Simula‑
tion 
(chr1, 
62X)

Raw reads - 22,884 279,538 0.03 73.28 0.00 12.37 -

Consent 84.72 23,597 280,569 0.03 97.01 99.77 0.14 7.29

NextDe‑
novo

83.47 23,515 188,302 0.03 99.58 99.96 0.20 2.43

Necat 85.12 23,542 264,959 0.08 98.46 98.83 0.55 2.75

Canu 81.26 23,369 279,129 0.41 98.03 96.58 2.02 18.08

CHM13 
(chr1, 
72X)

Raw reads - 91,209 499,238 17.07 81.19 0.18 8.57 -

Consent 99.18 90,701 503,237 19.22 80.72 83.11 1.37 17.43

NextDe‑
novo

97.13 90,981 505,469 10.70 89.10 89.31 0.90 1.83

Necat 98.13 89,170 506,817 11.43 88.30 88.67 0.99 2.98

Canu 92.59 84,270 502,469 13.44 85.13 80.64 2.21 126.72
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detect these chimeric reads and can split them at the LSRs or filter them based on 
their length after splitting; 89.10% of the corrected reads can be mapped to reference 
with ≥ 99% coverage, compared to 85.13% for Canu and 80.72% for Consent, while 
the comparable figure for Necat was slightly lower (88.30%) than with NextDenovo. 
We also investigated how accurate this chimeric read splitting process is. The results 
showed that only 0.07% of reads were split by error, lower than the 4.83% for Canu 
but higher than the 0.002% for Consent (a mis-split read was defined as a read that 
can be completely mapped to the reference without correction, but was not included 
in the corrected result or the length was significantly shorter after correction). This 
result is consistent with NextDenovo exhibiting the fewest chimeric alignments for 
read correction.

In summary, NextDenovo is able to correct reads at a faster speed, and the corrected 
reads contain fewer errors and are characterized by a higher uniform error rate and 
fewer chimeric alignments.

Assembly evaluation on non‑human genomes

We first evaluated NextDenovo in the context of the assembly of four non-human 
genomes (Arabidopsis thaliana, Drosophila melanogaster, Oryza sativa, and Zea mays) 
with the most widely used assemblers, Necat (v0.0.1), Canu (v2.0), Flye (v2.8), and 
Wtdbg2 (v2.5) on ONT data (Additional file 1: Table S1) and then used QUAST (v5.2.0) 
[22] to evaluate all assemblies concerning completeness (assembly size, gene complete-
ness), accuracy (number of misassemblies and Phred-scaled base error rate (QV)), and 
continuity (NG50/LG50 and NGA50/LGA50, Table 2, Additional file 1: Table S3). For 
the A. thaliana and D. melanogaster genomes, since the structure of these two genomes 
is relatively simple, most assemblers produced good assemblies. Notably, NextDenovo, 
Necat, and Flye outperformed Canu and Wtdbg2 on the overall evaluation metric, 
while NextDenovo, Necat, and Flye reported similar values for completeness and con-
tinuity. Concerning accuracy, compared to Necat and Flye, the NextDenovo assemblies 
contained fewer misassemblies and had a higher QV on the D. melanogaster genomes, 
although it exhibited two more misassemblies and a slightly smaller QV than the Flye 
assembly on the A. thaliana genome. In contrast, the genomes of O. sativa and Z. mays 
contain more repeats and are more complex, making them more challenging to assem-
ble. Benefiting from the high accuracy of the error-corrected data, NextDenovo is able 
to distinguish different repeats more reliably, ensuring that the NextDenovo assem-
blies exhibit greater continuity than other assembler results, especially for the Z. mays 
genome. NextDenovo can deliver an assembly with about 2, 61, 15, and 758 times the 
NGA50 values of Necat, Canu, Flye, and Wtdbg2, respectively. Moreover, the NextDe-
novo assemblies also contained the smallest number of misassemblies and had a higher 
QV than the other tools. Regarding completeness, the assemblies produced by NextDe-
novo, Necat, Canu and Flye exhibit similar values in terms of assembly size and gene 
completeness. In fact, for the genomes of A. thaliana and the O. sativa, NextDenovo 
provided near-chromosome level assemblies, and since the LGA90 values for these two 
assemblies were only 10 and 20, it implied that most of the chromosomes contain only 
1–2 long contigs.
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In terms of running time, NextDenovo is faster than Canu and Flye for the small (D. 
melanogaster and A. thaliana) or medium-sized genomes (O. sativa). For the repeat-
rich Z. mays genome, NextDenovo was 23 times faster than Canu and slightly faster 
than Necat, but slower than Flye due to the limitations of the CTA algorithm. Notably, 
Wtdbg2 was the fastest among all the tools. It should be noted that the time consump-
tion may vary if different parameters are used. In addition, NextDenovo can distribute 
almost all subtasks to run in parallel on computer cluster, and a subtask typically only 
required only 32 ~ 64 GB of peak memory. For most genomes, NextDenovo can com-
plete genome assembly in a day when running on dozens of computer nodes.

To test the performance of different modules of NextDenovo, we used hybrid strate-
gies that combined either the error correction step of NextDenovo with the assembly 
steps using the ATC-based tools Wtdbg2 and Flye (both tools can accept error-cor-
rected reads as input) or the error correction step of Canu and Necat with the assem-
bly step using NextDenovo. Overall, with a few exceptions, when combined with reads 
corrected by any tools as input, Wtdbg2 and Flye generally produced more contiguous 

Table 2  Statistics of nonhuman assemblies

NG50 is the length N that 50% of the reference genome is covered in contigs with length ≥ N. LG50 is the number of 
contigs with length ≥ NG50. NGA50 is an NG50 of aligned blocks that are obtained by breaking contigs at misassembly 
events and removing all unaligned bases. LGA50 is the number of aligned blocks with length ≥ NGA50. Misassemblies and 
QV are evaluated by QUAST, where QV is defined as −10× log10(

#mismatchesper100kbp+#indelsper100kbp
100kbp

) . Gene completeness is 
represented by the complete BUSCO values. QV and gene completeness were evaluated using the polished assemblies 
and other metrics were evaluated using the raw assemblies. The genomes of A. thaliana, D. melanogaster, and O. sativa 
were assembled on the same computer with 60 CPUs and 504 GB RAM of memory. The Z. mays genome, assembled by 
NextDenovo, Necat, and Canu, was run on a computer cluster with 7 nodes each with 32 CPUs and 256 GB RAM and 
assembled by Fly and Wtdbg2 run on a fat computer node. Best results for each metric are highlighted in bold

Sample Software Assembly 
size (Mb)

NG50 (Mb)/
LG50

NGA50 
(Mb)/LGA50

No. of 
misassemblies

QV Gene 
completeness 
(%)

Wall 
clock 
time 
(hour)

A. thaliana 
(452X)

NextDe‑
novo

128.37 15.18/5 15.18/5 19 33.25 99.20 6.83

Necat 124.55 15.01/5 14.98/5 44 31.93 99.20 6.82

Canu 138.29 9.31/5 9.31/6 430 25.09 99.20 312.13

Flye 121.16 14.63/5 14.63/5 17 35.65 99.20 12.00

Wtdbg2 157.75 2.68/14 1.87/19 326 19.78 94.80 2.10

D. mela-
nogaster 
(62X)

NextDe‑
novo

134.34 18.11/4 15.68/4 196 30.99 98.70 1.07

Necat 144.01 19.55/4 15.90/4 1,200 25.86 98.70 2.45

Canu 154.94 8.58/6 5.68/7 1,738 23.53 98.80 45.55

Flye 135.82 18.89/4 17.32/4 335 29.97 98.80 1.58

Wtdbg2 137.49 6.32/7 5.33/9 919 26.07 97.20 0.57

O. sativa 
(230X)

NextDe‑
novo

392.56 30.55/6 18.00/9 81 26.45 98.60 13.05

Necat 394.40 25.44/7 17.86/9 183 25.83 98.70 10.85

Canu 395.23 11.57/13 9.41/15 204 24.94 98.70 728.78

Flye 403.45 11.10/14 7.84/18 115 24.76 98.70 25.02

Wtdbg2 488.33 0.96/88 0.81/95 553 17.90 94.10 5.85

Z. mays 
(51X)

NextDe‑
novo

2,118.82 44.44/17 37.90/21 700 20.74 98.20 75.90

Necat 2,171.54 22.76/32 17.71/38 3,307 20.41 98.20 87.87

Canu 2,240.87 0.65/950 0.62/995 6,284 19.14 98.10 1,741.77

Flye 2,122.73 2.87/222 2.59/242 863 20.63 98.20 -

Wtdbg2 4,068.86 0.07/11298 0.05/13848 22,258 14.07 97.00 -
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assemblies than using raw data, and for relatively less complex genomes (A. thaliana 
and D. melanogaster), NextDenovo and Flye reported similar assemblies, better than 
Wtdbg2, and for complex genomes (O. sativa and Z. mays), NextDenovo reported 
much better assemblies than Wtdbg2 and Flye. In addition, Wtdbg2 assemblies using 
error-corrected reads from NextDenovo were generally more contiguous than those 
using error-corrected reads from Canu and Necat, with the exception of the O. sativa 
genome. The Flye assemblies using the error-corrected reads from NextDenovo were 
more contiguous on the relatively less complex genomes than those using the error-
corrected reads from Canu and Necat but were more fragmented on the complex 
genomes. When replacing the assembly steps of Canu or Necat with NextDenovo, 
NextDenovo reported better assemblies than Canu on all test genomes, and NextDe-
novo produced similar assemblies to Necat on the A. thaliana and O. sativa genomes, 
better assembly than Necat on the Z. mays genome, but worse assembly than Necat on 
the D. melanogaster genome (Additional file 1: Table S4 and S5).

Assembly of 35 human genomes by NextDenovo and comparative analysis of segmental 

duplications between humans

We envisage that the NextDenovo program will potentiate population-scale long-read 
assemblies, which in turn will facilitate the construction of human pan-genome using 
Nanopore long-read sequencing at low cost. Here, we collected blood samples from 
35 humans with diverse ethnicities, including 13 from Africa, six from East Asia, four 
from Southeast Asia, six from South Asia, two from the Middle East, two from Europe, 
one from Oceania, and one from America (Fig. 2A, Additional file 1: Table S6 and S7). 
Principal component analysis (PCA) based on single nucleotide polymorphisms (SNPs) 
with the integration of the 1000 Genomes Project dataset indicated that the 35 genomes 
together covered much of the genetic diversity present in modern humans (Addi-
tional file 1: Fig. S2). For each individual, > 150 Gb long reads (mean length 21 kb) were 
sequenced using the Oxford Nanopore long-read sequencing platform. Each individual 
contained approximately 12,615 (~ 0.49 × in coverage) ultra-long reads (> 100 kb), which 
enabled a contiguous assembly of complex regions in the human genome [7, 8, 10, 23]. 
In addition, for each individual, ~ 150  Gb of short reads (100  bp) were sequenced for 
error polishing and correction.

Given Flye performed well in both simulated and real non-human data, we evaluated 
the performance of NextDenovo and Flye, representing two assembly strategies (CTA 
and ATC), for human genome assembly (Fig. 2B, Additional file 1: Table S7). On aver-
age, NextDenovo and Flye produced similar assembly sizes (2.83 Gb) with about 90.84% 
genome coverage, but the assemblies produced by NextDenovo covered more single-
copy genes (97.99% vs. 97.82%) and retained more multi-copy genes (39.60% vs. 33.93%) 
than the Flye assemblies (Additional file  1: Table  S7 and S8). Moreover, as with the 
results of the maize and rice genome assemblies, the NextDenovo assemblies contained 
longer (1.03–1.61-fold larger NGA50) and fewer contigs (68.18–96.97% of LGA50) than 
the Flye assemblies for all 35 genomes. More importantly, the NextDenovo assemblies 
contained 388 misassemblies on average, ~ 70% of that of the Flye assemblies, while the 
NextDenovo assemblies also had a slightly larger average QV than the Flye assemblies 
(28.17 vs. 28.06).
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Segmental duplications (SDs) are complex segments of DNA with near-identical 
sequences that are difficult to assemble by short reads; they nevertheless constitute 
important sources of structural diversity in the human genome and are associated with 
various human diseases [24, 25]. The use of long-read genome assembly techniques has 
facilitated the detection of SDs [25, 26]. Here, by using the “Brisk Inference of Segmental 
duplication Evolutionary structure” (BISER) [27], we identified an average of 133.6 Mbp 

Fig. 2  De novo assembly of 35 human genomes. A Geographical location of the 35 individuals 
sequenced. B Comparison of 35 human assemblies between NextDenovo and Flye. NG50 is the length 
N such that 50% of the reference genome is covered in contigs with length ≥ N. LG50 is the number 
of contigs with length ≥ NG50. NGA50 is NG50 of the aligned blocks that are obtained by breaking 
contigs at misassembly events and removing all unaligned bases. LGA50 is the number of aligned 
blocks with length ≥ NGA50. Misassemblies and QV were evaluated by QUAST, where QV is defined as 
−10× log10(

#mismatchesper100kbp+#indelsper100kbp
100kbp

) . Gene completeness and “multicopy genes retained” are 
reported by asmgene; “multicopy genes retained” corresponds to the percentage of multicopy genes in the 
reference genome that remains multicopy genes in the assembly. QV, gene completeness, and “multicopy 
genes retained” were evaluated using the polished assemblies and other metrics were evaluated using the 
raw assemblies. The metrics represented by the red points are larger than the metrics represented by the 
blue points
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of non-redundant SD sequences per individual (Additional file 1: Table S9), correspond-
ing to ~ 4.7% of the human genome. Our results showed a notable correlation between 
total SD size and genome size (R2 = 0.9641, p < 2.2e − 16, Additional file 1: Fig. S3). We 
further identified African-specific SD hotspots, based on the difference of SD frequency 
between African and non-African assemblies (see the “ Methods” section). Our results 
showed that the highly differentiated hotspots were enriched in the pericentromeric 
regions (Fig. 3), which concurs with the predicted hotspots of genomic instability noted 
in T2T-CHM13 [25].

Long-read assembly holds out the promise of the comprehensive discovery of segmen-
tal duplications, especially the duplicated genes involved in SDs [25, 26]. We reasoned 
that these high-quality assemblies should facilitate the detection of gene duplications 
(Fig.  3 and Additional file  2: Table  S10). In particular, we identified gains of salivary 

Fig. 3  Distribution of duplicate genes and SD hotspots. A Gene symbols within duplications (gene names 
are marked by numbers and are shown in the subfigures). B Bar plots of SD hotspots in African/non-African 
genomes. C Coverage plot of 35 human genome assemblies. D Colored map of peri/centromeric satellite 
DNA (αSat: alpha satellite DNA, βSat: beta satellite DNA, HSat: human satellite DNA; see [10] for more detailed 
definitions). Ideogram plot was built from the T2T-CHM13 (v2) genome. Annotations of peri/centromeric and 
cytoband regions were downloaded from UCSC (https://​hgdow​nload.​soe.​ucsc.​edu/​gbdb/​hs1/)

https://hgdownload.soe.ucsc.edu/gbdb/hs1/
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amylase (AMY1) gene copies with open reading frames and multiple exons in ten indi-
viduals (including 8 Asians and 2 Africans). For example, two individuals sampled 
from Vietnam and Thailand acquired four and three additional AMY1 genes, respec-
tively, which may have served to improve their ability to digest starchy foods such as 
rice. Indeed, the acquisition of additional copies of the AMY1 gene is known to be a 
characteristic of populations with a high-starch diet [28], especially East and South East 
Asians. Additionally, four clusters of gene families, including preferentially expressed 
antigen of melanoma (PRAME), olfactory receptor (OR), G antigen (GAGE), and mel-
anoma-associated antigen (MAGEA), exhibited dense clusters of SDs with paralogous 
genes (Fig.  3). Therefore, long-read sequencing makes it possible to accurately assem-
ble those genomic regions that are characterized by highly similar paralogous clusters, 
including those containing expanded tandemly duplicated genes. Unfortunately, because 
we ran out of blood samples during the sequencing, additional experimental validation 
of the segmental duplications and duplicated genes was not possible.

Discussion
NextDenovo is not only an accurate error-correction tool but also an efficient de novo 
assembler, specifically developed for noisy long reads using the CTA strategy. In our 
evaluation, NextDenovo was able to correct reads at a faster speed and generate more 
accurate corrected reads than Canu and Necat. The corrected reads usually have similar 
accuracy to the HiFi reads while maintaining the contiguity of the raw reads. For assem-
bly, NextDenovo is much faster than the widely used CTA assembler, Canu. It is at least 
as fast or faster than Necat based on different input data. For the small and medium-
sized genomes, it achieved a faster speed than Flye, but NextDenovo was usually slower 
than other ATC-based tools for large repeat-rich genomes due to the additional time-
consuming error-correction step. However, on the other hand, with the high accuracy 
imparted by this error-correction step, NextDenovo can generate higher continuous 
assemblies containing fewer misassemblies. This is particularly true when assembling 
ONT “ultra-long” reads, since NextDenovo can generate partial or near chromosome-
level assemblies, and this applies not only to human genome assembly but also to the 
assembly of complex plant genomes. Indeed, NextDenovo has been successfully applied 
to large genome assemblies several times, such as with the ~ 10.5 Gb Cycas panzhihuaen-
sis genome (contigs N50 = 12 Mb) [29], the ~ 10.76 Gb allohexaploid oat genome (contig 
N50 = 75.27 Mb) [30], the ~ 40 Gb African lungfish genome (contig N50 = 1.60 Mb) [31], 
and the ~ 48 Gb Antarctic krill genome (contig N50 = 178.99 kb) [32]. Using ONT “ultra-
long” reads, NextDenovo can generate partial or near chromosome-level assemblies. 
Thus, for the ~ 4.59 Gb papaver genome [33], NextDenovo produced an assembly with a 
contig N50 of 65.57 Mb, the longest length being 178.776 Mb using ~ 19X ONT “ultra-
long” reads and ~ 86X ONT regular reads. In a similar vein, for the 3.69 Gb watermelon 
genome [34], NextDenovo produced an assembly in which the 11 longest contigs rep-
resent 11 chromosomes using ~ 57X ONT “ultra-long” reads. Finally, for the ~ 10.76 Gb 
allohexaploid oat genome [30], NextDenovo produced an assembly with a contig N50 of 
75.27 Mb, the longest length being 313.87 Mb using ~ 100X ONT “ultra-long” reads.

Currently, we noticed that NextDenovo can be used for HiFi data assembly, but its 
assembly quality is significantly lower than Hifiasm (Additional file  1: Table  S1 and 
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Table S11) [4], an assembly tool developed specifically for HiFi data. Additionally, Next-
Denovo cannot be used for haplotype-resolved de novo genome assembly without trio 
binning due to sequencing errors, although it can detect the LSRs caused by heterozy-
gosity, which is an advantage of assembly with HiFi data. However, ONT is gradually 
updating with new base calling models and chemistries that can improve the accuracy of 
raw reads, which should eventually make it possible for NextDenovo to perform haplo-
type-resolved assembly.

Conclusions
NextDenovo is a highly efficient error correction and assembly tool for noisy long 
reads. It can quickly deliver highly accurate error-corrected reads and produce accurate 
assemblies from these reads. Especially when assembling with ONT “ultra-long” reads, 
NextDenovo can generate partial or near chromosome-level assemblies. Furthermore, 
NextDenovo is an excellent assembly tool for population-scale long-read assembly using 
Nanopore long-read sequencing data.

Methods
We present the details of the algorithms of NextDenovo and the methods used in this 
study.

Overview of the algorithms underlying the NextDenovo

NextDenovo consists of five main steps. The initial step involves pairwise raw read over-
lapping, followed by the second step which filters the overlapping results to avoid erro-
neous alignments that affect the error correction accuracy. The third step focuses on 
error correction based on the filtered overlapping results, while the fourth step entails 
a two-step iterative pairwise corrected reads overlapping. The final step involves con-
structing an assembly graph using the overlapping results, followed by graph cleaning 
and result outputting.

Alignment and filtering

NextDenovo extracts the ~ 45X longest reads as seeds and performs pairwise reads 
overlapping all input reads and seeds using Minimap2 [35]. For each seed, NextDenovo 
partitions it into windows of 64 bp and calculates the overlapping depth in windows. A 
repeat window is defined as a window if its depth is greater than twice the average depth. 
A chimeric window is defined as a window if its depth is less than three. NextDenovo 
filters out an alignment if it is completely within a repeat window and splits a seed if it 
has a chimeric window.

Error correction and LSR detection

NextDenovo first uses the KSC algorithm to perform the initial rough correction. The 
KSC algorithm is adapted from the Falconsense algorithm [36]; it calculates a confidence 
score using the following formula:

score(P, b) = max score(P − 1, b)+ count3−mer − C
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where C represents the valid depth at position P, b ∈ {A,T ,G,C ,−} , and then deter-
mines the correct path using a traceback procedure which starts at the last position 
P. Meanwhile, it records the low-quality positions where the chosen alleles account 
for ≤ 50% of the total. For each low-quality position, NextDenovo extends it on both 
sides until there are ≥ 16 consecutive non-low-quality positions. This extended region is 
defined as a low-score region (LSR) if it contains ≥ 4 low-quality positions.

LSR correction

For an LSR R from a seed S, all subsequence Bs that span this LSR from the overlapping 
reads of S are collected, and a kmer set (K = 8) at the 40 bp flanking sequences of R is 
produced. Then, for each B, the count of shared kmers between the kmer set from B and 
R is calculated as its matched kmer score. NextDenovo sorts all kmer scores of Bs from 
large to small and removes all Bs with a kmer score ≤ C, where C is half of its previous 
kmer score. For the KSC algorithm, deletion errors in the reference sequence are more 
harmful than insertion errors because the overlapping reads in the regions with inser-
tion errors are not aligned. NextDenovo uses a greedy POA consensus algorithm that 
adopts a greedy strategy to insert bases in the consensus step to generate a pseudo-LSR 
seed by using the largest six Bs ranked by kmer score. All pseudo-LSR seeds from S are 
linked to a long pseudo seed L, and all Bs from S are mapped to L, and the KSC algo-
rithm is applied to produce a corrected pseudo seed P. This procedure is called twice to 
improve the accuracy of the LSRs.

Graph construction and cleaning

NextDenovo uses two rounds of pairwise overlapping to identify dovetail alignments 
using a modified Minimap2 between corrected seeds. The first round uses a large batch 
size and a large repetitive minimizer filtering threshold to rapidly detect candidate dove-
tail alignments. Then, for each candidate dovetail alignment, Minimap2 is used again 
with a smaller repetitive minimizer filtering threshold to produce more accurate align-
ments. Next, a directed string graph is constructed and transitive edges are removed. 
NextDenovo calculates the average indegree I and outdegree O of all nodes and clus-
ters nodes into two categories, repeat nodes and non-repeat nodes. The repeat nodes 
are defined as nodes with indegree ≥ 1.5I or outdegree ≥ 1.5O, whereas other nodes are 
defined as non-repeat nodes. For the paths comprising only non-repeat nodes, the “best 
overlap graph” (BOG) algorithm is used to remove ambiguous edges. For repeat nodes, 
NextDenovo first calculates the maximum overlapping identity I and maximum overlap-
ping length L, and maximum transitive score S (for an edge E from a to c, if there is node 
b, and there is an edge from a to b and an edge from b to c, then the count of b is defined 
as the transitive score of E) of out-edges or in-edges, and then removes any edges with 
overlapping identity <  = i x I and overlapping length l x L and transitive score 0.5 × S 
(here i and l are parameters). Subsequently, tips are removed and bubbles are resolved. 
Finally, for the complex subgraphs which usually contain many repeat nodes connected 
by only one in-node and one or more out-nodes, or one or more in-nodes and only one 
out-node, NextDenovo uses a series of gradually increasing overlapping identity, over-
lapping length, and transitive score thresholds to remove edges while maintaining con-
nectivity between in-nodes and out-nodes.
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Evaluating error correction

To evaluate the performance of NextDenovo error correction, we simulated about 62X 
ONT data with an N50 length of 20.77 kb from chromosome 1 of the GRCh38 genome 
using NanoSim (v2.6.0) [37] and randomly extracted about 72X ONT data with N50 
length of 56.77  kb from the chromosome 1 of the CHM13 genome (Additional file  1: 
Table S1). We next ran NextDenovo, Consent, Canu, and Necat with the same minimum 
read lengths to ensure consistency. Finally, we used minimap2 (-x map-ont) to map the 
corrected data to the reference and assessed their accuracy.

Evaluating assemblies

We used QUAST for assembly evaluation. For the A. thaliana, D. melanogaster, and Z. 
mays datasets, we used appropriate NCBI assemblies as the reference genome. For the 
O. sativa dataset, we used the assembly of HiFi data from the same individual by hifiasm 
(v0.16.1) as the reference genome. For the human datasets, we used the T2T assembly of 
CHM13 as the reference genome. The assemblies were further polished with NextPol-
ish using short and long reads and these genomes were subsequently used to evaluate 
QV and gene completeness. Gene completeness was evaluated with BUSCO for the A. 
thaliana, D. melanogaster, O.sativa, and Z. mays assemblies and paftools (v2.24) asm-
gene function [4] for the human assemblies. The commands and parameters used in this 
study are provided in the supplementary information file.

Sample collection, DNA extraction, library preparation, and sequencing by Nanopore

Peripheral blood samples (~ 5  mL) were collected from people living in China. High-
quality genomic DNA was extracted using the SDS (sodium dodecylbenzene sulfonate) 
method followed by purification with a QIAGEN® Genomic kit (Cat#13,343, QIAGEN) 
according to the standard procedures provided by the manufacturer. DNA degrada-
tion and contamination of the extracted DNA was monitored on 1% agarose gels. DNA 
purity was then detected using a NanoDrop™ One UV–Vis Spectrophotometer (Thermo 
Fisher Scientific, USA), with OD260/280 ranging from 1.8 to 2.0 and OD260/230 rang-
ing from 2.0 to 2.2. Lastly, DNA concentration was measured using a Qubit® 3.0 Fluo-
rometer (Invitrogen, USA).

In total, 2 μg DNA per sample was used as input material for the ONT (Oxford Nano-
pore Technologies) library preparations. After the DNA quality was controlled, size-
selection of long DNA fragments was performed using the BluePippin system (Sage 
Science, USA). The DNA fragments were then end-repaired, and an A-ligation reaction 
was conducted using a NEBNext Ultra II End Repair/dA-tailing Kit (Cat# E7546). The 
adapter in an LSK109 kit was used for further ligation and the Qubit® 3.0 Fluorometer 
(Invitrogen, USA) was used to quantify the size of the library fragments. Sequencing was 
then performed on a Nanopore PromethION sequencer (Oxford Nanopore Technolo-
gies, UK) at Grandomics Biosciences Co. (Wuhan, China). The output FAST5 files of 
Nanopore sequencer containing signal data and base calling were converted to FAST5 
files in FASTQ format with Guppy. The raw reads in fastq format with mean_qscore_
template < 7 were then filtered out, resulting in pass reads.
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Library preparation and sequencing by MGISEQ2000

Genomic DNA (1  μg) was randomly fragmented by Covaris. The fragmented DNA 
was selected by an Agencourt AMPure XP-Medium Kit to an average size of 200–
400 bp. The selected fragments were subjected to end repair, 3′ adenylation, adaptor 
ligation, and polymerase chain reaction (PCR) amplification, with the products, and 
then being recovered using an AxyPrep Mag PCR Clean-up Kit. The double-stranded 
PCR products were heat denatured and circularized by the splint oligo sequence. Sin-
gle-stranded circular DNA (ssCir DNA) was formatted as the final library and qual-
ity controlled. The quality-controlled libraries were sequenced on the MGISEQ2000 
platform.

Diversity of 35 human genomes

To determine the diversity of 35 human genomes, we mapped the short reads to the 
GRCh38 reference assembly using the BWA-MEM (v0.7.15) algorithm [38]. After 
sorting the reads by coordinates, and removing duplicate reads using SAMtools 
(v1.8) [39], HaplotypeCaller and CombineGVCFs in the Genome Analysis Toolkit 
(GATK, v4.0.4.0) [40] were used for calling and combining the GVCF files. We then 
applied the GenotypeGVCFs method in GATK to genotype SNPs based on genome 
positions from the 1000 Genomes Project dataset [41, 42]. After SNP filtering with 
“QUAL < 50,” we merged the SNPs with the 1000 Genomes Project data for principal 
component analysis.

Gene, gene duplications, and repeat annotations

Gene annotations of the 35 human genomes were performed by mapping GENCODE 
(v35) annotations [43] from GRCh38 using Liftoff (v1.6.3) [44] with the following set-
tings: liftoff -flank 0.1 -sc 0.85 -copies. Duplicate genes were identified based on the 
following criteria: (1) extra copy number > 1, (2) the number of exons > 1, (3) CDS 
length > 200  bp, and (4) containing complete open reading frames (ORF). Repeat 
annotations were conducted with RepeatMasker (v4.1.3) [45] and Tandem Repeats 
Finder (TRF) [46]. RepeatMasker was run with default settings and TRF was run with 
“trf 2 7 7 80 10 50 15 -l 25 -h -ngs” parameters.

Segmental duplication (SD) analysis

SDs were identified using BISER (v1.2.3) [27] based on the soft-masked human 
genomes. Low-quality SDs were filtered out using the following criteria: (1) < 1 kbp 
in length; (2) > 70% overlapping with satellite sequence or > 10% overlapping with 
simple repeats annotated with RepeatMasker; (3) < 90% identical by gap-compressed 
identity or < 50% identical including indels. The pipeline was conducted using an R 
script (open access on GitHub) [47] and a modified snakemake file downloaded from 
GitHub [48]. Next, we annotated 35 human genomes with unique ancestral units 
(duplicons) identified by DupMasker [49]. Regions that do not overlap with the dupli-
cons were annotated as new SDs. Finally, we defined the African-specific SD hotspots 
based on the frequency difference of SDs between African and non-African assem-
blies. The specific calculation steps were as follows: (1) obtained the non-redundant 
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SD regions for each human assembly, (2) calculated the frequency of SD coverage 
within African and non-African groups, (3) computed the difference between the fre-
quency of African and non-African of SDs. Regions with a difference much greater 
than zero were defined as African-specific SD hotspots. We mapped the positional 
information of SDs from 35 human genome assemblies to the T2T-CHM13-v2.0 [50] 
genome using the “paftools liftover” tool for visualization. SDs hotspots calculation 
and visualization were carried out with R packages: tidyverse [51], rtracklayer [52], 
plyranges [53], and karyoploteR [54].
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