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Abstract 

Background:  Despite clear evidence of nonlinear interactions in the molecular archi-
tecture of polygenic diseases, linear models have so far appeared optimal in genotype-
to-phenotype modeling. A key bottleneck for such modeling is that genetic data 
intrinsically suffers from underdetermination ( p ≫ n ). Millions of variants are present 
in each individual while the collection of large, homogeneous cohorts is hindered 
by phenotype incidence, sequencing cost, and batch effects.

Results:  We demonstrate that when we provide enough training data and con-
trol the complexity of nonlinear models, a neural network outperforms additive 
approaches in whole exome sequencing-based inflammatory bowel disease case–
control prediction. To do so, we propose a biologically meaningful sparsified neural 
network architecture, providing empirical evidence for positive and negative epistatic 
effects present in the inflammatory bowel disease pathogenesis.

Conclusions:  In this paper, we show that underdetermination is likely a major driver 
for the apparent optimality of additive modeling in clinical genetics today.
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Background
Since the sequencing of the first whole human genome in 2003 and the advent of high-
throughput sequencing techniques [1], clinical and population genetics have been bloom-
ing fields of research. Every year, an increasing number of genetic studies are published 
worldwide, dedicated to understanding the relationship between genotype and pheno-
type, which is a crucial step towards precision medicine and other health applications [2, 
3]. Nevertheless, given that each individual genome contains about three million vari-
ants, together with the challenges in gathering large, homogeneous cohorts because of 
limited phenotype incidence, sequencing cost, and batch effects, most of these studies 
suffer from a limited sample size n relative to the number of variants p (also called the 
p ≫ n setting in statistics). This underdetermination of genetic datasets has indeed been 
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a crucial problem so far, limiting the statistical power of analysis approaches and con-
tributing to puzzling results, such as the missing heritability problem [4, 5]. For this rea-
son, the go-to methods for genomic data analysis have historically always been additive 
(linear) models, such as univariate analysis of association (i.e., genome-wide association 
studies (GWAS) [6]), polygenic risk scores (PRS) [7], and linear mixed models [8, 9].

Relying on additive models has until now appeared to be optimal in the genetic con-
text  [10], thanks to their interpretability and simplicity, which conveniently translates 
into robustness at unfavorable n/p ratios. Researchers thus adopted this lens of additivity 
in their investigations to address the ubiquitous underdetermination of their datasets, 
notwithstanding biological arguments for the existence of nonlinear genetics effects, 
such as epistasis  [5, 11–17]. With the blooming of complex machine learning (ML) 
methods (e.g., deep learning) in the life sciences [18–20] and the growth of the available 
sample sizes because of advances in sequencing technologies [1] and the accompanying 
decrease in cost, it is now timely to consider whether more sophisticated approaches 
could also benefit genetic data. Such approaches could allow us to perceive aspects of 
the genetics landscape that are currently masked by the omnipresent lens of additivity.

Early attempts to apply neural networks (NN) to genome interpretation (GI), namely 
the explicit modeling of the relationship between genotype and phenotype, did not 
succeed in outperforming additive models  [10, 21]. The debate on the opportunity 
of using nonlinear models is still widely open in clinical genetics  [10, 21–29] and 
agricultural biotechnology  [30–34]. However, the current effectiveness of additive 
modeling in genetics raises more questions than answers  [15]. Most of the molecular 
mechanisms producing phenotypes described by systems and molecular biology studies 
are replete with nonlinear interactions between the components of extremely complex 
systems  [5, 11–17, 35]. In these disciplines, pure additive effects are as uncommon as 
they are widespread in current genetics literature.

From a data science perspective, we see two main limitations that could have 
prevented NN models for GI from outperforming additive approaches. First, most of 
the NNs applied on human genetic datasets of large sample sizes used SNP array data 
that has been prefiltered with a GWAS-based univariate variant selection [21, 26–29], 
thereby possibly removing a priori much of the nonadditive interaction signal from the 
input. Second, NN GI attempts on WES/WGS data have been only sporadic and mostly 
restricted to very small sample sizes  [22–24, 36, 37], while it is empirically clear that 
deep learning methods require large datasets to perform best. If nonlinear models can 
outperform linear ones, a key question is then how large a dataset needs to be before a 
nonlinear model starts offering any advantage.

In this article, we test the hypothesis that underdetermination is one of the major 
drivers for the apparent optimality of additive models in genetics. To do so, we exploit 
the intrinsic sparsity of biological networks to build the smallest NN model possible that 
is still capable of nonlinear inference and apply it to one of the largest available WES 
case–control datasets. This is a dataset for inflammatory bowel disorder (IBD), which 
constitutes an ideal test case for our study given its polygenic nature and high heritability 
estimates.

We show that once a sufficiently large sample size is reached, NNs reliably outperform 
conventional additive approaches. Moreover, we show (1) how this result provides 
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empirical evidence that, given enough samples and a model able to detect them, epistatic 
effects start to emerge from the data and (2) that positive/negative epistasis plays a role 
in the genetic mechanism underlying IBD. Our study indicates that the main reason for 
the effectiveness of additive models for the analysis of genetic data is their robustness 
at small sample sizes, thereby recontextualizing them as a situational and temporary 
necessary solution instead of the undisputed statistical model for genetics. Our results 
indicate that as larger genetic datasets become available, we can envision a systematic 
nonlinear advantage for NN models applied to GI.

Results and discussion
Small, biologically sparsified NNs outperform additive and nonlinear baselines

To address the predominant underdetermination of genetic datasets, but still benefit 
from nonlinear modeling, we minimized the gap between the number of samples and 
the number of model parameters by applying the smallest possible NN (but which could 
still perform nonlinear inference) to one of the largest whole exome sequencing (WES) 
inflammatory bowel disease (IBD) cohorts available.

Similarly to  [36, 37], to obtain a maximal reduction of the number of parameters in 
our NN, we start by using a compact, gene-centric representation of the input WES 
data in which each gene is represented by the observed mutational load it carries (see 
the “Material and methods” section). Genes are thus the base biological semantic entity 
in our models (see input data in Fig. 1). Several variations of this encoding have been 
explored as well (see Additional file  1: Fig. S1, Additional file  2: Table  S1, Additional 
file 3: Table S2) without observing performance improvement.

In Table 1, we benchmark three NN architectures specifically designed for the WES-
based case–control IBD prediction against conventional methods, such as an additive 
model and RF. We tested several alternatives for the additive model. In Table  1, we 
only show the best performing additive approach, which is a logistic regression with 

Fig. 1  Panel overview of NN architectures, each build on top of the shared gene module with increasing 
complexity. Panel A shows NNlogreg, the simplest architecture connecting the gene neurons G directly to the 
output, implementing a LogReg of the |G| neurons. Panel B illustrates NNbiosparse with connections between 
gene neurons G and pathway neurons P based on the KEGG database. The model in panel C, NNdense, adds a 
fully connected hidden layer to increase model expressiveness
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L2 regularization. We could not add polygenic risk scores (PRS) to this benchmark, 
because most of the variants found by GWAS are noncoding, resulting in only 42% of 
IBD GWAS variants [38, 39] present in our WES IBD dataset. A PRS computed on these 
42% of GWAS variants produces a test ROC AUC of 0.563. Methodological details and 
additional analyses on this variant selection can be found in Additional file 4: Note S1.

The architectures of the NNs we tested (as reported in Table 1) are shown in Fig. 1 by 
increasing complexity from left to right. In all of them, a shared gene module processes 
separately the features describing each gene (see the  “Material and methods” section) 
and the differences between the architectures lie in the arrangement of the modules 
connecting the |G| = neurons and the output neuron. These NN architectures were 
designed so that they represent three levels of expressivity (i.e., complexity of the 
decision boundaries they can learn). This translates in their increasing capability of 
modeling certain categories of interactions between the |G| neurons. In the simplest 
model, called NNlogreg (see Fig.  1A), each gene latent representation produced by the 
shared gene module is connected to the output neuron similarly to a logistic regression 
(LogReg). This model will therefore not be able to model any interactions between 
the |G| neurons. The second model (see Fig.  1B) represents an intermediate level of 
expressivity whereby two gene neurons are connected to and can thus interact in at most 
one hidden neuron of the next layer. The choice of the connection arrangements was 
based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database  [40] with 
the hidden nodes representing the KEGG pathways and the connection for each gene 
being picked out of the known KEGG gene-pathway relations. Since each neuron and 
each connection in this architecture has a biological meaning, we refer to this model as 
a biologically sparsified NN (NNbiosparse). Finally, Fig. 1C shows an NN with a standard 
densely connected hidden layer between gene neurons and output (NNdense). This way 
all gene neurons are connected to all hidden neurons, making it possible to model any 
kind of interaction between them (universal approximator) [41].

In Table  1, we show the ROC AUC obtained by each model on IBD case–control 
discrimination, alongside their number of trainable parameters. Our NN models 
outperform the best performing RF (two-sided t-test, corrected for correlation between 
ROC AUC measurements  [42]: p-value p = 5.77e−7 ) and the best additive model 
(corrected two-sided t-test  [42] p = 0.00457 ). Among the three NN architectures 
we presented, NNbiosparse, which has the lowest number of parameters, is also the best 

Table 1  Benchmark of our NN architectures specifically designed for the WES-based case–control 
IBD prediction against conventional methods

a Performance given as mean (standard deviation) of test set ROC AUC from 10 different full threefold cross-validation runs 
with identical splits across models

Model ROC AUC​a Number of 
parameters

Best additive model 0.728 (0.00599) 1,734,301

Random forest 0.688 (0.00578)

NNlogreg 0.753 (0.0117) 24,379

NNbiosparse 0.758 (0.00689) 25,503

NNdense 0.743 (0.00944) 6,515,063

NNlinear 0.717 (0.0261) 25,503
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performing model. A detailed table of RF performance on different data representations 
can be found in Additional file 5: Table S3.

Sample size can explain the apparent optimality of additive models in genetics

Table  1 shows that our NN models outperform the best results obtained by classi-
cal additive approaches, which is not always the case in genetic studies [10, 21, 22, 28, 
30–33]. To investigate in more details at which conditions this advantage appears, we 
show in Fig. 2 the comparison of the prediction performances of these two approaches 
in function of the sample size available during training. By looking at the trajectories of 
these models, we can see that when at least 80% (3038) of samples are used for training, 
our best approach (NNbiosparse) starts to outperform the additive model and the improve-
ment eventually becomes statistically significant. This empirically demonstrates that for 
this dataset the optimality of additive models is not general, but sample size-dependent.

The balance between model expressivity (ability to learn nonlinear patterns) and 
prediction quality is nevertheless quite delicate in this ( p ≫ n ) dataset, and is directly 
related to the bias–variance trade-off  [43, 44]. Bias and variance can be considered as 
two competing qualities of statistical models. Bias refers to the error the model makes 
because of incorrect assumptions and limited expressive power, and it is linked to 
underfitting. Variance represents the ability of the model to learn small variations 
(and noise) in the training data, and relates to the risk of overfitting. Simple additive 
approaches have high bias but, while their ability to model complex patterns is limited, 
the uncertainty about optimal model parameters will decrease faster than for more 
complex models. Genetic datasets have thousands or even millions of possibly noisy 
observations (variants) for each sample, and the intrinsic simplicity of additive model 
helps them handle the resulting uncertainty. At small sample size, additive models can 

Fig. 2  Performance using different random subsets containing 10%, 20%, 40%, 60%, 80%, and 100% of the 
dataset. Models shown are the best additive model ( L2 penalty), NNbiosparse and NNlinear. Performances are 
measured using ten different threefold cross-validation runs, using identical splits for the three models
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learn only a simple hypothesis from the data, while more expressive (high variance) 
models such as NNs are at greater risk of achieving poor generalization.

Absence of evidence is not evidence of absence

Figure 2 empirically shows that even if at low sample sizes additive models are optimal, 
there can exist a sample size threshold t above which certain nonlinear patterns become 
detectable by sufficiently expressive models. In the case of this IBD cohort and our 
NNbiosparse, we were able to empirically identify t ≈ 3000 , since it happens to be lower 
than the dataset sample size ( t < n ). We can speculate that the same behavior could be 
observed in several other real life genetic datasets for appropriately large sample sizes. 
Therefore, to have a chance to be truly conclusive and comprehensive, the currently 
ongoing debate on the use of additive versus nonlinear models on genetic datasets 
should make sure to investigate the behavior of both models across a sufficiently wide 
range of sample sizes. This is crucial to ensure that the apparent optimality of additive 
models does not come from the fact that t > n in the datasets under consideration. 
Furthermore, this might help to get a more complete molecular picture, thereby 
addressing the well-known missing heritability problem.

To exclude that the behavior in Fig.  2 is simply the result of the different format of 
the input representations between the additive model (which takes as input a vector 
of all the variants) and our NNs (which use our gene-centric data representation, see 
the “Material and methods” section), we ran an additional experiment. We add a third 
model to Fig. 2 to compare our NNbiosparse with an NN with the same architecture, but 
with identity functions instead of the hyperbolic tangent tanh nonlinear activations 
(NNlinear). This makes this NNlinear effectively equivalent to a linear model. Again, we see 
the same pattern as for the best additive model, indicating that the higher performances 
at high sample size emerge from the nonlinearity of the model and not from the different 
input encoding per se.

Empirical evidence for positive/negative epistasis in IBD

Nonlinear interactions between alleles, called epistasis, are ubiquitous at the molecu-
lar level  [5, 11–17]. As shown in Fig.  3D, G, epistasis between two alleles at two loci 
(genes, in our case) means that the phenotypic effect of the allele at Locus 1 depends 
on the allele present at Locus 2 [15], thus deviating from a situation in which each locus 
independently influences the phenotype (additivity, see Fig. 3A). In positive and negative 
epistasis (Fig. 3D), the epistatic loci are affecting the magnitude of each other’s effect on 
the phenotype. Conversely, when two alleles alone have a negative phenotypic effect, but 
taken together they have a positive (or vice versa) effect (see lock-and-key model exam-
ple in Additional file 6: Fig. S2), this is called reciprocal sign epistasis (Fig. 3G). Although 
our NNs produce individual-specific probability-like predictions, for illustrative pur-
poses in Fig. 3, we associate log odds ratios to the hypothetical alleles shown, because 
we needed a metric that can be negative (i.e., indicating a protective effect of variants) to 
more clearly illustrate reciprocal sign epistasis.

In many phenotypes, especially in polygenic diseases such as IBD, the interactions 
between multiple genetic factors can contribute to the phenotype and the modulation 
of its severity [16, 17, 45, 46]. Therefore, it is unsurprising that, if the bias–variance 



Page 7 of 17Verplaetse et al. Genome Biology          (2023) 24:224 	

trade-off allows a nonlinear model to robustly detect these patterns, this nonlinear 
model will outperform additive ones.

Relating the expressivity of NN architectures to epistasis types

From a mathematical perspective, a peculiarity of our NNbiosparse model (see Fig. 1B) 
is that the arrangement of the sparse interactions between the gene neurons G and 
the pathway neurons P is less expressive than a fully connected (dense) layer (see 
NNdense in Fig.  1C), and therefore, it cannot model every pattern that is accessible 
to NNdense. To draw biological conclusions from this observation coupled with the 
observed prediction performances shown in Table 1, we link the expressivity of the 
three different NN architectures (i.e., the types of nonlinear patterns they can model) 

Fig. 3  Different forms of biological epistasis (left) with minimal NN architectural requirements, illustrated by a 
small NN with two gene neuron inputs (middle) and the activation function of the hidden layer on top of the 
gene neurons (right). *A linear function of a linear function is a linear function
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with the different forms of biological epistasis that they can detect (see Additional 
file 7: Table S4).

NNlogreg (Fig.  1A) is only capable of modeling additivity between genes, because no 
interaction between features (gene neurons G in this case) is allowed in their architecture 
(see Fig. 3A–C). The sparse architecture of NNbiosparse, with the gene–pathway layer (see 
Fig. 1B) can model negative and positive epistasis between genes, because genes of the 
same pathway are allowed to interact via that pathway neuron, which has a nonlinear 
activation function (see Fig. 3E, F). Since our NNbiosparse design particularly allows for 
only one connection from each gene neuron to the next layer, two genes will never 
interact in more than one pathway neuron, making it impossible to model nonlinearly 
separable patterns, such as reciprocal sign epistasis. A fully connected layer such as in 
model in Fig.  1C, however, can model such epistasis, because it can model arbitrarily 
complex functions, including nonlinearly separable ones, as a composition of nonlinear 
activations (see Fig. 3I).

The last column of Fig.  3 illustrates an intuitive explanation of this behavior, 
by showing the output of three minimal examples of NNs representing our three 
architectures, having just two gene neurons as input. With a linear activation (see 
Fig. 3C), the joint effect of the two genes will always be additive, namely the simple sum 
of their separate effects, making it impossible to model epistatic interaction. However, if 
we add a nonlinear activation, such as tanh , to the same model (Fig. 3F), the same shift 
on the x-axis can cause different shifts on the y-axis, depending where on the x-axis we 
are located. In Fig. 3F, we show an example of how such a model could learn a positive 
epistatic interaction between two genes, where the effect of the two genes together 
is larger than the sum of their separate effects. Nevertheless, tanh is a monotonically 
increasing function, making it impossible to model reciprocal sign epistasis, because the 
joint effect of both inputs cannot have opposite direction with respect to their separate 
effects. To allow this, we will need to break the monotonicity of the curve by allowing 
the NN architecture to learn how to compose the activation functions of more than 
one hidden neuron, thus needing more than one hidden neuron via which the genes 
can interact (see Fig. 3I). Intuitively, reciprocal sign epistasis is similar to the classical 
XOR classification problem in ML  [47], that also needs at least two hidden neurons, 
representing an OR and NOT AND gate, to be modeled (see Additional file 6: Fig. S2).

Reciprocal sign epistasis is not detectable on the current dataset

From the performance in Table 1, we see that, given the currently available sample size, 
there is no advantage in investing more parameters (higher model complexity) towards 
training NNs capable of modeling reciprocal sign epistasis (NNdense) on this IBD cohort, 
since the significant increased model complexity produces lower AUC. Given the 
currently available samples in this IBD cohort, a model expressivity sufficient to address 
positive/negative epistasis seems therefore to be optimal. Similarly to what we previously 
discussed between additive and nonlinear models, the explanation for this fact may be 
that either (1) reciprocal sign epistasis does not have a major role in IBD pathogenesis or 
(2) the current sample size is insufficient to detect it.

To empirically verify that this inability is not just the result of the over-parametri-
zation of NNdense with respect to the dataset size, causing a suboptimal positioning in 
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the bias–variance spectrum, we ran an additional experiment building two additional 
biologically sparsified architectures. The first architecture, shown in Additional file  8: 
Fig. S3A, has an identical number of neurons as NNbiosparse but allows for more than 
one connection for each gene, representing all the gene-pathway relations present in 
the KEGG database [40]. The second additional model, shown in Additional file 8: Fig. 
S3B, contains an extra sparse layer that mimics known gene–gene interactions from the 
Interactome database [48] before the gene–pathway layer. In both models each pair of 
genes can possibly reach the output neuron following more than one path (see Fig. 3H), 
thereby achieving the requirements necessary to model reciprocal sign epistasis as well. 
Notwithstanding the lower number of parameters compared to NNdense (see Additional 
file  7: Table  S4), none of these models outperform NNbiosparse (with mean (std) ROC 
AUC 0.756 (0.00829) and 0.729 (0.0110), respectively), suggesting that indeed either 
reciprocal sign epistasis is not present or not robustly detectable at this sample size. 
It will be interesting to further investigate these more complex architectures in future 
larger cohorts.

Random sparsity outperforms biologically meaningful and learned sparsity

Table  1 shows that the sparse gene–pathway layer in our NNbiosparse is instrumental 
towards its performance, because it allows an optimal level of expressivity while avoid-
ing over-parametrization. But does the biologically meaningful arrangement of these 
connections between neurons mimicking genes and pathways also play a role towards 
prediction accuracy? In Fig.  4, we compare the performance of the knowledge-based 
sparsity pattern extracted from KEGG with three other connection arrangements using 
the same number of connections, thus without increasing the number of parameters.

The first surprising result is that the knowledge-based sparsification does not out-
perform the random one (see Fig. 4). Using biological networks to sparsify gene–path-
way interactions in an NN layer seemed an obvious choice, since it assumed that genes 

Fig. 4  Comparison of four sparsification methods: A based on biological pathways (KEGG), B randomly, C 
learned using RigL algorithm, and D learned using heavy L1 regularization. For fair comparison, all models 
shown have the same number of connections and hidden units



Page 10 of 17Verplaetse et al. Genome Biology          (2023) 24:224 

participating in the same pathway could be more prone towards modulating each other 
in an epistatic fashion. However, databases such as KEGG are still far from complete: 
only one third of the genes in our dataset could be connected to a KEGG pathway (as 
described in the “Material and methods” section, we joined them to a “dummy neuron” 
to avoid discarding them).

In Fig.  4, we also benchmarked two ways to learn optimal sparsity arrangements 
from the data, using the RigL [49] method and imposing L1 regularization on the gene–
pathway connections. In both cases, the learned sparsity yielded lower performance. We 
hypothesize that by learning which connections to make and thus optimizing sparsity 
during training, we offer the model another way to overfit the noisy training data, in 
contrast to the strong regularizing effect of random sparsity. For more details on the RigL 
method and its benchmark settings, see Additional file 9: Fig. S4 and Additional file 10: 
Suppl. Method.

Since the prediction performance does not seem to benefit from learned or biologically 
meaningful arrangements of the hidden layer sparsity, we investigate whether the level of 
sparsity is playing a more important factor role. In Fig. 5, we compare the performance 
of several random sparsity degrees, ranging from only connecting 25% of the genes to a 
pathway hidden neuron, to a fully connected layer with 281 connections for each gene. The 
figure shows an optimum at 75% of the genes connected, suggesting that the model could 
be regularized even further by dropping some genes completely (although the difference in 
performance for 75% and 100% of the genes connected is not statistically significant).

This shows that irrespectively of the arrangement of the connections, the main driver 
of the model performance is the degree of sparsity, and the effect it has on its complexity 
(i.e., its position in the bias–variance spectrum).

Further exploiting random connections with ensemble learning leads to the best 

predictions

Given the results obtained by random sparsification in our models, we decided to 
exploit this behavior to build an ensemble learner of randomly sparsified NNs to solve 
the IBD prediction task. Ensemble methods follow the intuition that combining a set 
of (possibly weak) base learners with low correlation between them will lead to better 
prediction, more robust to noise [50]. The crucial step in this process is minimizing the 

Fig. 5  Effect of degree of sparsity on performance, going from only 25% of the genes randomly connected 
to a fully connected layer. Red crosses indicate the number of parameters for each model
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correlation between the base learners by injecting a random element in each of them. 
Conventionally, the randomness is introduced through features and input sample 
subsampling. Here, we randomized instead the connection arrangements in our sparse 
NN layer. We thus train 100 randomly sparsified NNs on the full training set and average 
their prediction. In Table 2, we show that the ensemble model has an almost 2% increase 
in ROC AUC with respect to NNbiosparse (corrected two-sided t-test [42] p = 0.04146).

For completeness, we performed additional experiments aiming at predicting 
Crohn’s disease and ulcerative colitis, the two main IBD subtypes, separately, 
notwithstanding the consequently smaller sample sizes available for training (see 
Additional file 11: Fig. S5, Additional file 12: Table S5, Additional file 13: Note S2).

Conclusions
In this article, we zoomed in on the role that the widespread underdetermination of genetic 
datasets ( p ≪ n ) plays on the performance of different modeling methods, depending on 
their position in the bias–variance spectrum. We thereby showed that underdetermination 
is plausibly one of the major drivers for the apparent optimality of additive modeling in clin-
ical genetics today. We showed that when we reach more favorable n/p ratios by constrain-
ing the NN complexity and providing enough training data, NNs outperform conventional 
additive models in WES-based IBD case–control discrimination. To do so, we proposed a 
biologically meaningful sparsified NN architecture, but further experiments showed that 
the degree of sparsity is more decisive for predictive performance than the biological mean-
ingfulness of the connections, again emphasizing the importance of underdetermination. 
Furthermore, by linking the expressivity of our NN architectures with different forms of 
biological epistasis, we provided empirical evidence that positive/negative epistatic effects 
are present in the genetic architecture of IBD. Our result suggests that larger cohorts will 
allow further improvement through more complex modeling architectures in the near 
future, thereby enabling a new, nonadditive lens on genome interpretation and contributing 
to a more complete molecular picture of all kinds of phenotypes.

Materials and methods
Dataset

We analyzed the data from the inflammatory bowel disease (IBD) exome sequenc-
ing study (dbGaP phs001076.v1.p1) [51], a case–control study containing whole exome 
sequences (WES) for 3318 IBD cases and 480 controls. The 3318 cases consist of the 

Table 2  Ensemble model 

a Performance given as mean (standard deviation) of test set ROC AUC from 10 different full threefold cross-validation runs

Model ROC AUC​a Parameters

NNbiosparse 0.758 (0.00689) 25,503

Randomly sparsified (100% genes connected) 0.759 (0.00778) 25,503

Randomly sparsified (75% genes connected) 0.760 (0.00571) 19,708

Ensemble (100% genes connected) 0.774 (0.00276) 25,503

Ensemble (75% genes connected) 0.776 (0.00265) 19,709
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two main subtypes of IBD: 2036 Crohn’s disease (CD) patients and 1215 ulcerative colitis 
(UC) patients. For 67 cases, the IBD subtype is unknown (indeterminate colitis). In the 
control group, 39.4% of the participants are male compared to 46.7% of the cases. The 
data is provided as a VCF file listing the observed variants.

Encoding the exome variants into feature vectors

Encoding WES data into ML-ready feature vectors is not trivial, since each individual 
carries an arbitrary number of variants (on average 47,403 in our dataset), and the entire 
dataset covers a large pool of variants (1,733,480 unique variants in our dataset). To 
overcome this issue, we followed the approach we adopted in our previous works [36, 
37], which we briefly summarize here.

We first annotated all variants in the VCF with Annovar [52], assigning each of them 
to a gene and to one of the following 16 functional classes: UTR3, UTR5, splicing, 
upstream, downstream, intronic, intronic ncRNA, exonic ncRNA, splicing ncRNA, 
exonic non-frameshift insertion, exonic frameshift insertion, exonic non-frameshift 
deletion, exonic frameshift deletion, exonic stoploss, exonic stopgain, exonic startloss 
and exonic nonsynonymous. We then summarized the annotated variants by 
aggregating them at the gene level [36, 37], making the gene the base semantic entity in 
our feature encoding. To do so, we count for each gene how many variants of a specific 
functional class map to it. In this way, each gene’s mutational load is quantified by 
a 16-dimensional histogram. Each WES sample is thus described by a matrix of size 
16× 23, 177 with 23,177 being the total number of genes in the dataset. We refer to 
this representation as gene-centric encoding [36, 37]. It is possible to further enrich this 
representation using gene-level and variant-level scores as additional features [37]. To 
avoid numerical issues, we standardized the counts of each type of variant across all 
genes.

A biologically meaningful sparse NN architecture for GI

A shared gene module decouples the number of parameters from the number of genes

After defining our gene-centric feature encoding for WES data, we describe the NN 
architectures we devised to process this data and address the p ≫ n issue. Similarly to 
our previous work [36, 37], we process each gene histogram in our gene-centric encoding 
with a shared gene module (see Fig. 1). By sharing the same NN module across all the 
genes, we minimize the number of parameters needed to transform the (16, 23177) input 
matrix representing each sample into a compact latent vector of length 23,177, where 
each gene is described by just 1 value (the output of the shared gene module, mentioned 
as neuron Gi for the ith gene, with 1 ≤ i ≤ 23, 177 and the total set of gene neurons being 
G = {G1, . . . ,G23,177} ). In all the models presented here, we used the same architecture 
for this shared gene module, with 1 hidden layer of 50 neurons (see Fig. 1)) (chosen as the 
smallest architecture needed to perfectly fit the training data after a coarse grained tuning 
phase), which brought the total number of trainable parameters to a modest 850 weights 
plus 51 biases.
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Exploiting the small‑worldness of biological networks to sparsify the NN architecture

Figure  1 illustrates the three different NN achitecture prototypes built on top of the 
shared gene module described above. The simplest approach connects the |G| = 23, 177 
neurons to the output prediction, implementing a logistic regression (LogReg) of the 
gene neuron activations (see Fig. 1A). We refer to this model as NNlogreg. Adding a dense 
hidden layer (see Fig. 1C) between the gene layer and the output allows us to surpass the 
limited expressivity of the simple LogReg and to capture nonlinear interactions between 
the genes, but at the same time it causes a combinatorial explosion of the number of 
parameters. We refer to this model as NNdense.

To obtain the best of both worlds, meaning nonlinear inference and maximal 
parameter reduction, in Fig. 1B, we sparsify the connections between the |G| neurons 
and the next layer. To do so in a biologically meaningful manner, we randomly pick for 
each gene one of the KEGG pathways it contributes to [40]. Two thirds of the genes in 
the dataset (15,219 out of 23,177 genes) do not belong to any known KEGG pathway 
and they were connected to one dummy pathway neuron, to avoid discarding them. The 
idea behind this architecture is that we assign a biological meaning to each NN module, 
since each neuron in Fig. 1B represents a biological unit, such as a Gene Gi or a Pathway 
Pj . This way we preserve the interpretability of the model, while requiring significantly 
fewer parameters than an NN with a dense hidden layer (Fig. 1B). We refer to this model 
as the biologically sparsified NN (NNbiosparse).

Biologically sparsified layers, like any other NN module, can be stacked on top of each 
other. For example, in Additional file  8: Fig. S3, we built an NN with two NNbiosparse 
layers, mimicking gene–gene [48, 53] and gene–pathway interactions, thus allowing even 
more complex interactions between neurons, and thus a more expressive NN model, at 
the cost of an increased number of parameters, yet still lower than NNdense.

Implementation details

All NNs in this paper have been implemented with PyTorch  [54] and are trained 
with the Adam optimizer, a learning rate of 0.001, a batch size of 128, and a weighted 
focal binary cross-entropy loss function ( α = 480/(480+ 3, 318) = 0.12638 , γ = 2 ) 
to address the class imbalance. Weight decay and dropout layers were used as 
regularization techniques. Epochs ranged between 20 and 75 depending on the model 
architecture. The hyperparameter search grid for the different models is supplied in 
Additional file  14: Table  S6. The source code is freely available at https://​bitbu​cket.​
org/​norav​er/​ibd_​gi/​src/​master/ [55]. All models in this paper were evaluated using 10 
repetitions of threefold cross-validation with stratified splits. We report the mean and 
standard deviation of the area under the ROC curve (AUC) of the test set. The same 
splits were used to compare models in Table 1 and Figs. 2, 4, and 5. The choice to use 
three folds was motivated by computational time. To verify that the same patterns 
occur in other cross-validation approaches, a tenfold cross-validation was performed 
for the best linear model and neural network, with results shown in Additional file 15: 
Table  S7. The performances on the individual cross-validation runs of Fig.  2 are 
shown in more detail in Additional file 16: Fig. S6.

https://bitbucket.org/noraver/ibd_gi/src/master/
https://bitbucket.org/noraver/ibd_gi/src/master/
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Baseline additive and nonlinear models

We used logistic regression with L1 and L2 penalty as additive baseline models. 
We implemented it using log loss with the SGDClassifier from the scikit-learn 
library  [56]. As they were applied to the individual variants, these models have 
1,733,481 parameters and needed regularization ( α = 1 for L2 penalty, α = 0.01 for 
L1 penalty). As a nonlinear baseline method, we used the Random Forest (RF) model 
from scikit-learn. The RF on the individual variants uses the 1,733,480 dimensional 
feature vector described above, it has 1000 estimators of a maximum depth of 1000. 
The RF on the summed gene vectors uses as input the sum of the above-described 
16-dimensional mutational load histograms for each gene and 10,000 estimators of 
a maximum depth of 3. The RF on the NN learned gene activations uses the gene 
activation values extracted from the first hidden layer of the fully trained NNlogreg, 
NNbiosparse or NNdense as input, and 10,000 estimators of a maximum depth of 3.
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