
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Xu et al. Genome Biology (2023) 24:121
https://doi.org/10.1186/s13059-023-02961-6

Genome Biology

RabbitTClust: enabling fast clustering
analysis of millions of bacteria genomes
with MinHash sketches
Xiaoming Xu1   , Zekun Yin1,2*, Lifeng Yan1,2, Hao Zhang1,2, Borui Xu1, Yanjie Wei3, Beifang Niu4,
Bertil Schmidt5 and Weiguo Liu1* 

Abstract 

We present RabbitTClust, a fast and memory-efficient genome clustering tool based on
sketch-based distance estimation. Our approach enables efficient processing of large-
scale datasets by combining dimensionality reduction techniques with streaming and
parallelization on modern multi-core platforms. 113,674 complete bacterial genome
sequences from RefSeq, 455 GB in FASTA format, can be clustered within less than 6
min and 1,009,738 GenBank assembled bacterial genomes, 4.0 TB in FASTA format,
within only 34 min on a 128-core workstation. Our results further identify 1269 redun-
dant genomes, with identical nucleotide content, in the RefSeq bacterial genomes
database.

Keywords:  Genome clustering, MinHash sketching, Minimum spanning tree, Big data,
Redundancy detection

Background
Clustering nucleotide sequences is an important operation in bioinformatics with appli-
cations including duplicate detection [1] and species boundary identification [2]. With
the progress of sequencing technologies, more and more genome sequences are gener-
ated at explosive speed. So far, over one million assembled bacteria genomes have been
submitted to NCBI GenBank [3] comprising several terabytes in size. Even though
widely used tools, such as CD-HIT [4] and UCLUST [5], rely on fast heuristics, they
can become prohibitively slow or memory intensive when clustering long genomic
sequences because of their alignment-based distance measures.

Traditional alignment-based algorithms [6, 7] often fail to compute pairwise similari-
ties in practical time, especially for complete assembled genomes. Recently, k-mer-based
alignment-free algorithms [8] and sketching strategies [9] are becoming popular for esti-
mating sequence similarities. Mash [10] introduced fast genome distance estimation

*Correspondence:
zekun.yin@sdu.edu.cn; weiguo.
liu@sdu.edu.cn

1 School of Software, Shandong
University, Jinan, China
2 Shenzhen Research Institute
of Shandong University,
Shandong University, Shenzhen,
China
3 Shenzhen Institute of Advanced
Technology, Chinese Academy
of Sciences, Shenzhen, China
4 Computer Network Information
Center, Chinese Academy
of Sciences, Beijing, China
5 Institute for Computer Science,
Johannes Gutenberg University,
Mainz, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-02961-6&domain=pdf
http://orcid.org/0000-0002-0370-2222

Page 2 of 20Xu et al. Genome Biology (2023) 24:121

using MinHash sketches which approximates the distance by selecting a small subset of
hashed and sorted k-mers. This strategy provides an approach to efficiently compute dis-
tances between sequences with a length of 10 million or even longer.

Hierarchical clustering approaches often rely on a matrix of pairwise distances among
input objects. However, memory requirements of the distance matrix can become pro-
hibitive for large-scale input data. In order to reduce compute and memory consump-
tion, clustering algorithms based on heuristics often choose the longest sequence as the
representative sequence and only compute the distance between representative genomes
and other genomes [11]. As a consequence, heuristic clustering algorithm may output
sub-optimal results [12]. Furthermore, popular tools such as CD-HIT and UCLUST
have been designed for clustering short read or protein sequences. They often fail when
clustering long assembled genome sequences.

Nowadays, many tasks such as read mapping [13] or metagenome discovery [14] are
reference-based. In some cases, several different versions of genome submissions to
NCBI RefSeq with similar contents exist, which may lead to ambiguous results. Other
applications such as RabbitUniq [15] and fastv [16] are based on unique k-mers of the
reference genomes to identify microorganisms. These methods can miss partial unique
k-mers when processing repeats or redundant genomes. Thus, when running reference-
based applications, removing highly similar genomes can be beneficial to avoid errors
caused by redundant references [15]. Identification of boundaries between microbial
species is often based on computing the pairwise Average Nucleotide Identity (ANI) of
large collections of microbial genomes (such as fastANI [2] and its re-evaluations [17,
18]).

Recent tools for large-scale clustering of biological sequences include Linclust [19],
Gclust [20], and MeShClust3 [21]. Linclust measures similarities by gapless local align-
ment, which suffers from high runtimes and has a significant memory footprint. Gclust
is a parallelized clustering tool for microbial genomic data using sparse suffix arrays
(SSAs) and maximal exact matches (MEMs) for similarity measurement. However, gen-
eration of SSAs and MEMs between large collections of long genomic genomes also suf-
fers from both high computational and high space complexity. Even though MeShClust3
is able to cluster about 10,000 bacterial genomes in about 50 h, it is not able to deal with
millions of genomes in practical time. This establishes the need for an approach that can
cluster large amounts of long genomic sequences in practical time on modern hardware
platforms with high computational efficiency and low memory requirements.

We address this need by proposing RabbitTClust, an efficient clustering toolkit based
on MinHash sketch distance measurement for large-scale genome datasets. Fast sketch-
ing (an approximate, compact summary of the original data) is used to compute similari-
ties among genomes with a small memory footprint. It consists of two modules:

1.	 clust-mst (minimum-spanning-tree-based single-linkage hierarchical clustering), and
2.	 clust-greedy (greedy incremental clustering)

clust-mst relies on a graph-based linear space clustering algorithm based on minimum
spanning tree (MST) computation [22] to perform single-linkage hierarchical clustering.
Our MST construction relies on dynamically generating and merging partial clustering

Page 3 of 20Xu et al. Genome Biology (2023) 24:121 	

results without storing the whole distance matrix, which in turn allows for both memory
reduction and efficient parallelization. clust-greedy chooses the longest genome in each
cluster as representative and only computes distances of incoming genomes against the
representative. Distances between incoming and representative genomes can be com-
puted simultaneously in multi-threaded fashion.

As a result, RabbitTClust advances the scalability of genome clustering methods and is
able to carry out terabyte-scale experiments on a single computer workstation.

Results
Performance comparison

The pipelines of clust-mst and clust-greedy are illustrated in Figs. 1 and 2, respectively.
More details are explained in the “Methods” section.

RabbitTClust can efficiently finish the clustering of the bacterial genomes from NCBI
RefSeq Release 211 [23] (bact-RefSeq) and Genbank Release 249 [3] (bact-GenBank) on
a workstation with two 64-core AMD EPYC 7T83 CPUs, 256 GB DDR4 memory, and
7.68 TB WD SN640 SSD. The bact-RefSeq dataset (455 GB in FASTA format) consists
of 113,674 complete genomes, while bact-Genbank contains 1,009,738 genomes with
valid taxonomy-check-status [24]. The total size of bact-Genbank is 4.0 TB in FASTA
format. Using a distance threshold of 0.05 and 128 threads, clust-mst finishes the clus-
tering of bact-RefSeq within 6 min and with a memory footprint of 10.70 GB. Based on
the ground truth from the NCBI RefSeq species taxonomy identifier (species-taxid), the
created clustering of clust-mst has an NMI score of 0.961. Using a distance threshold
of 0.05 and 128 threads, clust-greedy finishes the clustering of bact-GenBank within 34
min, a memory footprint of 16.45 GB, and an NMI score of 0.956 (based on NCBI Gen-
bank species-taxid).

Fig. 1  Pipeline of clust-mst: (i) sketch creation, (ii) streamed distance computation for each pair genomes and
MST generation, (iii) cluster generation. More details of distance computation and MST generation are shown
in Fig. 3

Page 4 of 20Xu et al. Genome Biology (2023) 24:121

Mothur [25] can finish hierarchical clustering with a PHYLIP-based distance
matrix. In addition, Mash [10] can compute a PHYLIP-based distance matrix of
genomes with the triangle option. Using 128 threads on the 128-core workstation,
the Mash &Mothur pipeline (Mash v.2.3 and Mothur v.1.48.0) can finish hierarchical
clustering of bact-RefSeq with a runtime of 6 h, a memory footprint of 7.33 GB and
an NMI score of 0.961. Compared to the Mash &Mothur pipeline, clust-mst of Rab-
bitTClust thus achieves a speedup of 66 with identical NMI score (see Table 1).

CD-HIT, UCLUST, and Linclust can not deal with both bact-RefSeq and bact-Gen-
Bank and run out of memory. Furthermore, Gclust and MeShClust3, can not finish
the clustering of the full RefSeq dataset (bact-RefSeq) in practical runtime. To com-
pare efficiency and accuracy of RabbitTClust with these tools, we created a subset of

Fig. 2  Pipeline of clust-greedy: (i) sketch creation, (ii) greedy incremental clustering

Table 1  Performance comparison of different clustering tools and datasets

a SpeedUp: SpeedUp for clust-mst module of RabbitTClust

 bOOM: Out Of Memory

Dataset Tool Time SpeedUpa Memory (GB) NMI

bact-RefSeq MeShClust3 >14days - - -

Gclust - - OOMb -

Mash &Mothur 365m14s 66.4 7.33 0.961

clust-mst 5m30s - 10.70 0.961

clust-greedy 5m05s - 4.83 0.959

sub-Bact MeShClust3 3,096m18s 2,996.4 139.17 0.920

Gclust 1,502m05s 1,454.6 156.35 0.812

Mash &Mothur 4m37s 4.5 1.19 0.973

clust-mst 1m02s - 5.77 0.973

clust-greedy 59s - 5.17 0.970

Page 5 of 20Xu et al. Genome Biology (2023) 24:121 	

bact-RefSeq called sub-Bact, which contains 10,562 genomes with a total size of 43
GB in FASTA format. We execute MeShClust3 (v.2.0) with the commands meshclust
-d sub-Bacteria.fna -o sub-Bacteria.clust -t 0.84 -b 1000 -v 4000 (as recommended in
[21]) and Gclust (v.1.0.0) using gclust -both -nuc -threads 128 -ext 1 -chunk 2000MB
sub-Bacteria.sorted.fna > sub-Bacteria.clust with a larger chunk size for better thread
scalability. Using 128 threads, MeShClust3 and Gclust can finish the clustering of
sub-Bact with a runtime of 51.60 h and 25.01 h, a memory footprint of 139.17 GB and
156.35 GB, and an NMI score of 0.920 and 0.812, respectively. In comparison, clust-
mst can finish the clustering of sub-Bact with a runtime of only 61.76 s, a memory
footprint of 5.77 GB, and an NMI score of 0.973. Mash &Mothur requires 276.84 s,
has a memory footprint of 1.19 GB, and also achieves NMI score of 0.973. Compared
to MeshClust3, Gclust, and Mash &Mothur pipeline, clust-mst thus achieves speed-
ups of at least 2996.4, 1454.6, and 4.5 for the sub-Bact dataset, respectively. Details
are summarized in Table 1.

Efficiency and scalability

The combination of efficient algorithms and highly optimized implementation makes
the two modules of RabbitTClust fast, scalable, and memory efficient. We adopt a low-
complexity MinHash sketching algorithm to estimate the pairwise distances for both
clust-mst and clust-greedy. Consider a genomic sequence of length L and the sketch size
S (number of sampled k-mers for distance estimation) with S ≪ L . The computational
complexity of sketch-based distance measurement of two genomic sequences of length L
is O(S) , while the traditional alignment-based approach requires O(L2).

Consider N to be the number of genomic input sequences. The streaming MST gen-
eration algorithm for clust-mst exhibits linear space complexity of O(N) and avoids stor-
ing the full pairwise distance matrix with N 2/2 entries. clust-greedy also has linear space
complexity O(N) since it only needs to store the label (representative or redundant) of
each genome instead of pairwise distances.

RabbitTClust takes full advantage of modern compute platforms by featuring fast I/O
parsing, multi-threading, and vectorization of inner loops. The sketch creation for each
genome is a time-consuming part for both clust-mst and clust-greedy. It is thus parallel-
ized using both multi-threading and vectorization. For multi-threading, thread scalabil-
ity is bottlenecked by sequence parsing as the thread number grows. We use the efficient
FASTA parsing libraries RabbitFX [26] and kseq [27] to eliminate parsing bottlenecks,
thus, achieving better performance and thread scalability.

Distance computation is another hotspot kernel. Our streaming strategy for MST gen-
eration can be parallelized with the distance computation as shown in Fig. 3. For clust-
greedy, the distances of each incoming genome with all representative genomes are also
computed in parallel. Since there is no dependency between multiple threads, distance
computation can achieve good thread scalability.

Figure 4 shows the thread scalability of clust-mst and clust-greedy on the 128-core
AMD workstation. Both methods achieve near linear speedup on bact-RefSeq and
bact-Genbank for up to 72 threads. Note that the speedup grows more slowly when the
thread number exceeds 72 due to disk I/O and multi-threading overheads. For exam-
ple, synchronization is required by multiple threads to get the labels (representative or

Page 6 of 20Xu et al. Genome Biology (2023) 24:121

redundant) of the incoming genomes. In addition, RabbitTClust can achieve comparable
performance on a 64-core Intel platform, as shown in Additional file 1.

We also provide the RabbitSketch [28] library supporting vectorization with SIMD
instructions (e.g., SSE/AVX) for fine-grained data parallelization. RabbitSketch includes
an efficient hash function calculation with SIMD instructions to compute multiple

Fig. 3  Parallel streaming strategy for sub-MSTs generation. In Step1, each thread generates and updates the
sub-MST when finishing the computation of t rows of the distance matrix. In Step2, sub-MSTs are merged
into the final MST after finishing the computation of the whole distance matrix

Fig. 4  Thread scalability for clust-mst and clust-greedy on bact-RefSeq and bact-Genbank, respectively

Page 7 of 20Xu et al. Genome Biology (2023) 24:121 	

k-mers concurrently for sketching genomes. Furthermore, RabbitSketch integrates
highly optimized robin-hood-hashing to manipulate the min-heap data structure used for
MinHash sketches. For pairwise distance computation, we use a block-based vectorized
approach to reduce branch misprediction penalties when computing set intersections.

Distance measurement accuracy

RabbitTClust includes two distance measures for estimating pairwise similarities
between genomes. The default distance measure of clust-mst and clust-greedy are Mash
distance and AAF distance (assembly and alignment-free distance), respectively. Ondov
et al. [10] analyzed the relationship between ANI and Mash distance for a collection
of Escherichia genomes. The MinHash sketch strategy used in the k-mer-based Mash
distance is a locality-sensitive hashing technique. Since the probability of a hash col-
lision is higher between more similar elements [29], this approach can provide a tight
estimation when the actual Jaccard index is large [30]. We use simulated datasets with
known mutation rates to further explore the relationship between mutation rate and
Mash distance. Simulated datasets are generated by mutating each nucleotide whereby
the mutation rate has an equal possibility of insertion, deletion, and substitution. We set
the simulated genome sequence length to 10,000,000, and the mutation rates vary from
1 to 10% in order to simulate highly similar genomes. Figure 5 shows the relationship

Fig. 5  Relationship between the mutation rate and Mash distance for different k-mer values and sketch sizes.
Rows represent different k-mer sizes, and columns represent different sketch sizes. The x-axis is the actual
mutation rate, and the y-axis is the Mash distance. The red dotted line indicates a perfect model relationship
Mash distance = mutation rate . The numbers at the bottom right of each plot are the root-mean-square error
versus the perfect model

Page 8 of 20Xu et al. Genome Biology (2023) 24:121

between Mash distance and mutation rate of different k-mer and sketch sizes. In each
sub-figure, the probability of deviation from the true mutation rate grows as the actual
mutation rate grows (i.e., actual similarity decreases). It can be seen that Mash distance
achieves a tighter estimation of the mutation rate with a larger sketch size and smaller
k-mer sizes generally decrease the Mash distance below the actual mutation rate. Thus,
k-mer size and sketch size should be chosen large enough for good distance accuracy.
More details about choosing k-mer size and sketch size are discussed in the “Methods”
section. The simulation of genomes is in a perfect random model without accounting for
compositional characteristics like GC bias and GC mutation difference. Still, the practi-
cal experiences show a high correspondence between Mash distance and mutation rate
with relatively low root-mean-square error. Previous work [10, 31] also suggested that a
random model of k-mer occurrence was not entirely unreasonable.

AAF distance measurement [32, 33] is based on containment similarity for genome
redundancy detection. Similarity estimation by containment coefficients is suitable for
genome redundancy detection especially when the lengths of genomes are very differ-
ent. When sketch size is fixed and genomes are of different size, the distributions of the
hash values within the sketches can be very different. Thus, matching rates of hashes in
the two sketch sets can be much smaller than the true containment similarity between
the two considered genomes. Thus, a fixed-size-sketch-based method like Mash dis-
tance is not suitable for accurate containment similarity estimation of genomes with sig-
nificantly different sizes. The sketch sizes of containment coefficients are proportional
to the length of the original genomes, ensuring that the hash values in sketches have a
similar distribution. We have simulated a dataset called simulate-Bact to evaluate the
performance of the AAF distance measurement based on the containment similarity
for duplication detection. Simulate-Bact (2.6GB) consists of 400 genomes comprising 8
clusters with 50 genomes per cluster. The genomes in a cluster are generated by cut-
ting random proportions ranging from 0.0 to 1.0 in length of an original seed bacterial
genome. The similarities between the seed genomes are very low. Thus, the inter-cluster
similarity is very low as well. Since the seed genomes totally contain the other genomes
within a cluster, for duplication and redundancy consideration, the similarities between
the seed genome and other genomes are 100% in theory. The Normalized Mutual Infor-
mation (NMI) score is used to evaluate the accuracy of the clustering result with a value
between 0 (poor) and 1.0 (perfect). As is shown in Table 2, using a distance threshold of

Table 2  Evaluation of Mash distance and AAF distance on the Simulate-Bact dataset with distance
threshold 0.001

a NOC: Number Of Clusters

 bPd : Default sampling proportion, which serves as 1/6969 on this dataset

Method Sketch Size Time(s) Memory (GB) NOCa NMI

Mash distance with
fixed sketch size

1000 2.220 1.31 216 0.568

5000 2.594 1.32 212 0.569

10,000 3.135 1.34 211 0.570

AAF distance with
variable sketch size

length ∗ (1/10, 000) 2.057 1.27 31 0.899

length ∗ Pd
b 2.199 1.30 26 0.911

length ∗ (1/1, 000) 2.655 1.32 12 0.983

Page 9 of 20Xu et al. Genome Biology (2023) 24:121 	

0.001 and a suitable sketch size (1/1000 of the genome length), the AAF distance with
variable sketch sizes can achieve a high NMI score of 0.983. The number of clusters
generated using the Mash distance is much larger than the actual cluster number since
the lower match rate of sketch hash values leads to over-estimated distances. In conclu-
sion, the variable-sketch-size-based AAF distance performs much better than the fixed-
sketch-sized-based Mash distance for genomes of very different lengths.

Clustering accuracy

clust-mst and clust-greedy have different characteristics and are suitable for differ-
ent application scenarios. clust-mst is equivalent to popular single-linkage hierarchical
clustering, which requires computation of all pairwise distances among input genomes.
clust-greedy is based on heuristic greedy incremental clustering and does not need to
compute all pairwise distances. Thus, clust-mst often has higher accuracy but longer
runtime, especially when the number of input genomes (N) is large. For clust-greedy,
runtimes are affected by the distance threshold parameter. It needs to compute the dis-
tances between incoming genomes and the representative genomes. Lower distance
thresholds result in more representative genomes, thus increasing runtimes.

For a series of genomes with the same ancestor but with relatively low similarities, the
clustering result of clust-greedy may have low accuracy. Note that clust-greedy selects the
longest genome as the representative genome for a cluster. Thus, it can not cluster these
genomes together when the ancestor is not the longest genome. We simulated the five
random seed genome sequences and generated 30 sequences from each seed genome
with a mutation rate of 0.045. The lengths of these sequences are about 10,000,000,
and substitution and indel are of equal possibility. The mutation rate of each sequence
against its seed sequence is less than 0.05. For sequences generated from the same seed
sequence, the pairwise mutation rates are larger than 0.05. The similarities between the
randomly generated seed sequences are very low. Thus, the inter-cluster distances are
almost 1.0. When clustering these 155 genome sequences with a distance threshold of
0.05, clust-mst clusters these 155 genomes into 5 clusters and achieves an NMI score of
1.0. However, clust-greedy generates much more clusters and merely achieves an NMI
score of 0.487. Because there are insert mutations, the seed sequences may not be the
longest in the ground truth cluster. Thus, clust-greedy can not label the seed sequences
as representatives which leading to poor clustering results.

When a genome is labeled as redundant, clust-greedy will ignore the relationship with
other genomes except for its representative. Thus, compared to the clust-mst, it can not
chain clusters by the distance between redundant genomes from different clusters. As a
consequence, clust-greedy tends to generate more clusters. On the one hand, it may lose
some genome connections since the absence of distance computation among redundant
genomes. On the other hand, it only suffers negligibly from noisy chaining of clusters
caused by low-quality assembled genomes, thus, achieving higher purity. This feature
makes clust-greedy more suitable than clust-mst to deal with low-quality datasets. Fur-
thermore, the default distance measure of clust-greedy is the AAF distance, which is
more accurate for estimating the containment coefficient of genomes with very different
lengths. Thus, it is more suitable for duplication or redundancy detection.

Page 10 of 20Xu et al. Genome Biology (2023) 24:121

Filtering redundant genomes

In some cases, there are redundant submissions to the NCBI RefSeq bacterial database. To
identify genomes with identical nucleotide content but different assembly accessions, we
can simply set the distance threshold parameter to zero. On bact-RefSeq, clust-greedy iden-
tifies 1269 identical genomes distributed in 612 clusters. The list of the assembly-accession,
bioProject, bioSample, species-taxid, and organism-name of these 1269 genomes is shown
in Additional file 2. Most of these clusters consist of genomes with the same species-taxid,
although some genomes with identical nucleotide content also have different species-taxids.
For example, the species-taxid of GCF_003479085.1 and GCF_902364055.1 are 2292204
and 1544, respectively. This may cause ambiguous results when such genomes are used as
reference genomes in other applications. Furthermore, different distance thresholds corre-
spond to different degrees of redundancy detection; e.g., higher distance thresholds lead to
bigger clusters with more genomes being labeled redundant. To build a non-redundant ref-
erence dataset for reference-based applications, increasing the distance threshold will retain
fewer representative genomes and reduce the intra-species diversity of reference genomes.

By analyzing clust-greedy results, low-quality or mislabeled redundant genomes can be
identified by analyzing intra-cluster quality. We use purity and coverage to evaluate the
intra-cluster quality. Purity of a cluster is the ratio of the maximum species number to
the total genome number in this cluster. The coverage is the ratio between the total num-
ber of genomes in the clusters (including at least two genomes) and the number of entire
genomes. Note that purity is meaningless when coverage is very low since the purity score
will be 1.0 if each cluster contains only one genome. We call the clusters with purity less
than 1.0 unpurified clusters.

In an unpurified cluster, the genomes with the maximum number of species-taxid are
labeled as dominant genomes, while the others are labeled as impurity genomes. We run
clust-greedy on bact-Genbank with a distance threshold of 0.001. The overall purity is 0.996,
and the coverage is 0.907. Purity is relatively meaningful since the coverage shows that less
than 10% of the total genomes serve as a single cluster. With a small distance threshold (e.g.,
0.001), an unpurified cluster contains genomes that are highly similar but with different
species-taxids. In this scenario, we focus on the impurity genomes in the unpurified clus-
ters. A total of 4289 impurity genomes in bact-Genbank have different species-taxids with
their dominant genomes. By comparing the taxonomic identity of genome assemblies from
NCBI report [34], we can find that 74.4% of these 4289 impurity genomes have different
species-taxid and best-match-species-taxid. The list of the assembly-accession, species-taxid,
and best-match-species-taxid of these 4289 genomes is shown in Additional file 3. In these
4289 impurity genomes, 965 genomes have different taxids in genus rank with their domi-
nant genomes, and even 46 genomes have different taxids in family rank. The genomes with
different taxids in family rank are potentially mislabeled. The list of the assembly-accession
and the taxids in different ranks are shown in Additional file 4.

Discussion
RabbitTClust is both efficient and highly scalable. It is able to cluster the whole NCBI
Genbank bacteria assembled genomes (4.0 TB in FASTA format with 1,009,738 genome
files) with a limited memory footprint in practical time. The sketch-based distance meas-
urement makes the distance computation orders-of-magnitude faster than traditional

Page 11 of 20Xu et al. Genome Biology (2023) 24:121 	

alignment-based algorithms. The memory footprint is only linear in terms of sketch size
rather than the square of the genome length. In addition, the streaming strategy of MST
generation only needs a linear memory footprint in terms of the number of genomes and
does not require to store the whole distance matrix. All time-consuming kernels are highly
optimized by means of multi-threading, fast I/O, and SIMD vectorization to take full
advantage of compute resources on modern multi-core architectures.

Note that RabbitTClust has been designed for clustering long genomic genomes, but
is not effective for short sequences (e.g., short sequencing reads) and highly degener-
ate genomic sequences. For short sequences, the classical CD-HIT and UCLUST are
more suitable considering both efficiency and accuracy. There are two main reasons that
make the sketch-based distance measurement less accurate for highly degenerate genome
sequences, such as sequences with high mutation rates. The accuracy of distance estima-
tion will decrease as the actual similarities of genomes decrease, especially when the sketch
size is significantly less than the genome size [30]. Figure 5 shows that the deviation from
actual distance grows as the true similarity decreases. Increasing the sketch size can alle-
viate the decrease of the accuracy but lead to a decrease in efficiency. In general, k-mer-
based distance measurements will be easily affected by high mutation rates in degenerate
sequences since a single mutation will mutate k consecutive k-mers. Our future work there-
fore includes the integration of alternatives for distance measurement (such as strobemers
[35]) in RabbitTClust to improve the clustering quality for degenerate sequences.

Conclusions
RabbitTClust is a toolkit that can efficiently cluster long genome sequences with high simi-
larity together with MST-based and greedy incremental clustering strategies. Users can
choose between two modules (clust-mst and clust-greedy) for different application sce-
narios. The traditional MinHash sketching algorithm has high efficiency and provides an
estimation for the Jaccard similarity. However, the distance estimation for genomes with
significantly different lengths has only insufficient accuracy. We thus employ AAF dis-
tance measurements with variable sketch size to accurately estimate containment similar-
ity, especially for redundancy detection of genomes with different sizes. Our MST-based
clustering module uses Mash distance by default, while the greedy incremental clustering
module employs AAF distance. RabbitTClust can be used to cluster large collections of long
genomic sequences with relatively high similarity, including but not limited to bacterial
databases. clust-mst can cluster the whole RefSeq bacterial genomes, which can be used for
species boundary evaluation of prokaryotes. clust-greedy can filter out different degrees of
redundancy by using suitable distance thresholds. For many reference-based applications,
such as fastv, RabbitUniq, and Mash screen, removing redundant reference genomes can
reduce the obfuscation of results. Furthermore, with a distance threshold of zero, clust-
greedy can find genomes with identical nucleotide content and thus identify redundant or
mislabeled genome submissions.

Methods
RabbitTClust pipeline

The clust-mst pipeline (see Fig. 1) consists of four parts: (i) sketch creation, (ii) pairwise
genome distance computation, (iii) MST generation, and (iv) cluster generation. The

Page 12 of 20Xu et al. Genome Biology (2023) 24:121

clust-greedy pipeline (see Fig. 2) consists of three parts: (i) sketch creation, (ii) distance
computation, and (iii) greedy incremental clustering. Both of them support two types of
input: a single genome file or a list of genome files. RabbitFX and kseq are used for effi-
cient sequence parsing of the single genome file or the file list, respectively.

After parsing, k-mers (i.e., substrings of length k) are generated by decomposing the
genome sequences and their reverse complements in a sliding-window way. Only canon-
ical k-mers (the smallest hash value between a k-mer and its reverse complement) are
used to create sketches. S minimum hash values are chosen to compose a sketch where
S denotes the sketch size. Note that the hash function should be uniform and determin-
istic [9]. Uniformity ensures that hash values converted from the input k-mer set of a
genome are mapped evenly across the hash value space, which provides a representative
sampling of MinHash sketches. Determinism ensures that the same input k-mer always
produces the same hash value. Considering efficiency and the features mentioned above,
we use the MurmurHash3 function in RabbitTClust. MurmurHash3 [36] is a popular
non-cryptographic hash function that converts k-mers to integers. To improve effi-
ciency, we include a vectorized implementation of MurmurHash3 with SIMD instruc-
tions which manipulates multiple k-mers concurrently [37].

Distance computation in clust-mst is used to estimate pairwise genome similarities for
each pair of sketches. MST generation is done by using a streaming strategy together
with distance computation in parallel, as illustrated in Fig. 3. After the MST is con-
structed, the final clusters are generated by cutting off edges over the threshold in the
MST.

For clust-greedy, the sketches are sorted by genome length in descending order. The
sketch corresponding to the longest genome is added to the representative set. Each
sketch in this set represents a cluster. For each remaining sketch, we compute the dis-
tances between the current incoming sketch and all representative sketches. If the dis-
tance between this incoming sketch and representative sketches A is the minimum
distance and is less than the threshold, the incoming genome is added to the cluster A.
If all distances to representative sketches are over the threshold, the incoming sketch is
used as the representative of a new representative sketch set. Clustering is finished after
all the remaining sketches are processed.

Sketching and distance measurement

We rely on sketching of k-mers for similarity estimation among input genome sequences
based on their Mash distance [10] or AAF distance [33] using resemblance Jaccard or
containment coefficients. This reduces the size of the input data set by several orders-of-
magnitude (the sketch size for Jaccard coefficient and the mean value of variable sketch
sizes for containment coefficient are 1000 k-mers per genome by default).

Consider two genomic sequences G1 and G2 . The Jaccard Index J for their resemblance
can be approximated by J (G1,G2) ≈ J (S(G1), S(G2)) = |S(G1) ∩ S(G2)|/|S(G1) ∪ S(G2)|
where S(G1) and S(G2) are hash value sets of the two subsampled k-mer sketches of G1
and G2 . Mash [10] proposed Mash distance based on a Poisson distribution of the point
mutation rate defined as D = − 1

k
ln 2J

1+J  , where k is the k-mer size and J is Jaccard index.
Mash distance correlates well with the ANI as D ≈ 1− ANI.

Page 13 of 20Xu et al. Genome Biology (2023) 24:121 	

Fixed-size sketches are suitable for computing the resemblance Jaccard coefficient
when the lengths of genomes are roughly equal but not in the case of significantly dif-
ferent sizes. When de-duplicating, we also offer a containment analysis option to find
duplicate sequences of different sizes. Compared to resemblance, the variable-size-
sketch-based containment method is more suitable for genomes with significantly dif-
ferent sizes. The hash value distributions of fixed-size sketches are different when the
genomes are of very different sizes, so the matching rate of hashes in the two sketch
sets is much smaller than the containment similarity of original genomes, see Fig. 6b.
Containment coefficient of G1 in G2 is approximated by c ≈ |S(G1) ∩ S(G2)|/|S(G1)| ,
whereby sketch sizes are proportional to the size of the respective genomes [38]. AAF
distance is defined as d = − 1

k
ln c where c is the containment coefficient [32]. As is

shown in Fig. 6b, the matching rate of minimum hashes in the sketch of the smaller
genome is similar to the containment similarity between the two genomes.

Minimum spanning tree for single‑linkage hierarchical clustering

Hierarchical clustering requires computation of all pairwise distances. The dimension
of the distance matrix is O(N 2) , where N is the number of genomes. It is unpractical to

Fig. 6  Differences between fixed-size and variable-size MinHash sketches on k-mer sets with similar
sizes (a) and very different sizes (b). The pair of shaded circles represent two k-mer sets (set A and B) and
the overlapping part represents their intersection. The diagrams below each pair circle are the hash sets
converted from the k-mer sets. The space of hashes is 2b with b-bit hash values, leading to a numerical range
of hash values between 0 and 2b − 1 . The points on horizontal lines denote the hash values from set A and B.
Solid points are minimum hash values that compose the sketches, while hollow points are hash values not
in sketches. Solid arrows represent matching of hashes between two sketches, while dotted lines represent
matching not in sketches. In a, sets A and B have similar size, and sketches are composed of 7 minimum
hashes (solid points). A and B can get high resemblance from sketches since the distributions of sketch
hashes are similar across space 2b . In b, set B is three times the size of set A and contains A totally. The larger
set B thus saturates the space more densely. In ( b1 ), sketches are both of fixed size of 7. The match rate (1/7)
of minimum hashes in the sketches (solid arrow) is much smaller than the containment similarity (7/7) of the
original k-mer sets. In ( b2 ), sketch sizes are variable and in proportion to the size of respective k-mer sets. Thus,
the sketch size (number of solid points) of A is still 7, while the sketch size of B is now 21. The matching rate of
minimum hashes in set A is similar to the containment similarity between A and B 

Page 14 of 20Xu et al. Genome Biology (2023) 24:121

store the whole matrix in memory for large input datasets. However, the memory foot-
print of the MST is only linear with respect to the number of genomes which is sig-
nificantly smaller than the whole distance matrix. Thus, we have designed a parallelized
streaming approach for MST generation. Subsequently, the MST is chosen to generate
clusters by cutting off the edges whose lengths are over a predefined threshold.

Our streaming method is inspired by the edge-partition-based distributed MST algo-
rithm [39]. The all-to-all distance matrix can be considered as a complete graph. In this
complete graph, vertices express genomes, and the weights of edges express their pair-
wise distances. When the graph is partitioned into several sub-graphs, any edge that does
not belong to the MST of a sub-graph containing the edge does not belong to the MST
of the original graph [40]. This property guarantees that the MST can be constructed by
merging sub-MSTs in streaming fashion, which avoids storing the whole distance matrix
in memory. In our implementation, the sub-MSTs are concurrently constructed using
multiple threads. As shown in Fig. 3, t rows of the distance matrix compose a sub-graph.
P sub-MSTs are generated from P sub-graphs concurrently, where P is the thread num-
ber. P sub-MSTs are updated as new pairwise distances are calculated. The final MST is
merged from the P sub-MSTs after finishing the whole distance computing.

For runtime consideration, the distance computation and sub-MST generation and
updating are implemented in parallel by multiple threads. Only P sub-MSTs and P sub-
graphs are stored in memory for MST generation. For N input genomes, the magnitude
of sub-graphs and sub-MSTs is t · N and N, respectively. For P threads, the total memory
footprint is of a magnitude of O(P · (t + 1) · N) . The parameter t is used to control the
dimension of the sub-graphs which is set to 8 by default. Since P and t are much smaller
than N, the total memory footprint is typically linear in the number of genomes.

The time consumption of generating clusters from the MST is comparatively small.
Since the MST for a dataset will not change as long as the sketch parameters do not
change, we store the MST information into an output file. Clusters with different thresh-
olds can be generated from the stored MST file without re-generating the MST again.
Users can run with -f option to use the stored MST file as an input.

Note that the MST-based clustering strategy is equal to the single-linkage hierarchical
clustering, which may chain two separated clusters together by the noise point. clust-mst
takes into account the local density of each genome vertex [41]. For each vertex, the local
density is defined as the number of vertices with a distance under the threshold. For
each cluster generated by cutting off the over threshold edges of the MST, in default the
vertex, x, is labeled as noise when its local density dens(x) < min(Q1, 2) , where the Q1 is
the first quartile. clust-mst will then cut the edges with the noise vertices to reduce the
impact of chaining two clusters together by noise vertices.

Benchmarking clustering accuracy

We use purity and NMI (Normalized Mutual Information) score [42] to assess the qual-
ity of clustering results. The ground truth of bacteria genomes from NCBI Refseq and
Genbank databases are the species taxonomy identifier (species-taxid) from the assem-
bly summary report files.

Page 15 of 20Xu et al. Genome Biology (2023) 24:121 	

Purity is used to measure the degrees of mixing for each cluster. A purity score of 1.0
means the elements in a predicted cluster are all from the same real class. For the pre-
dicted clusters P, the ground truth class G, and the total genome number N, the purity
can be computed by Eq. 1. However, purity does not penalize scattered cluster result
leading to a purity score of 1.0 if each element serves as a single cluster.

NMI is a normalization of the Mutual Information (MI) score to scale the results
between 0 (no mutual information) and 1.0 (perfect correlation). Equation (2) describes
the MI of predicted clusters P and ground truth class G to reveal the mutual dependency
between P and G, where N denotes the total number of genomes. MI is normalized by
the average entropy of P and G to scale the results between 0 and 1. Entropy and NMI
are computed as shown in Eqs. (3) and (4). NMI score computation is implemented with
scikit-learn [43]. The scripts are publicly available in our repository’s evaluation direc-
tory [44].

Parameters

k‑mer size

Considering accuracy, the value of k is a trade-off between sensitivity and specificity [10].
Similarities are more sensitive to smaller k since k-mers are more likely to match. How-
ever, there is also a higher chance that collisions may inflate the proportion of shared
k-mers when the genome size is large. The probability of a specific k-mer appearing in
a random nucleotide string of size L is 1− (1− |�|−k)L , where the � is the alphabet set
( � = A,C ,G,T  ). The k-mer size should be large enough to avoid too many collisions
by chance. On the other hand, since k consecutive k-mers will be affected by a single
mutation nucleotide, as k grows, the number of matching k-mers between genomes is
reduced, leading to lower similarity sensitivity between genomes. The optimal k-mer
size needs to be large enough to significantly reduce the chance collisions without losing
the similarity sensitivity [33].

To consider both specificity and sensitivity, RabbitTClust firstly scans all input
genomes to identify the largest genome length Ll and average genome length La . The

(1)purity(P;G) =
1

N
p∈P

max
g∈G

p ∩ g

(2)MI(P;G) =
∑

p∈P

∑

g∈G

|p ∩ g |

N
log

(

N |p ∩ g |

|p||g |

)

(3)H(X) = −
∑

x∈X

|x|

N
log

(

|x|

N

)

(4)NMI(P;G) =
MI(P;G)

[H(P)+H(G)]/2

Page 16 of 20Xu et al. Genome Biology (2023) 24:121

k-mer size k can be computed by Eq. 5, where the L is the genome length, and the q is the
desired probability of observing a random k-mer [31]. The optimal k-mer size ko is com-
puted by Eq. 5 using q = 0.0001 and L = Ll . Furthermore, to protect the accuracy from
the chance collisions of k-mers, we define a warning k-mer size kw as the lower bound
when choosing k. kw is computed using q = 0.001 and L = Ll by Eq. 5. Users can set a
specific k-mer size by the option of −k , and when the k-mer size is smaller than kw , the
k-mer size will be reset to the ko.

Sketch size

MinHash [38] is a fast method to estimate the Jaccard similarity of two sets. It has been
proven effective in large-scale genome distance estimation [10]. Thus, we also adopted
this method when designing RabbitTClust. The sketch size is the number of minimum
hash values in the MinHash sketch. The memory footprint of the sketch for each genome
is about 8KB when the sketch size is set to 1000 (each hash value is saved as an unsigned
64-bit integer). In addition to the memory footprint, the sketch size also influences runt-
ime and accuracy. The MinHash algorithm in RabbitTClust maintains a minHash-heap
with complexity O(L · log |S|) where |S| is sketch size, and L is the genome length. Fur-
thermore, the time of distance computation is linear with respect to the sketch size since
it is based on computing the intersections of sets.

The distance estimation accuracy of a pair of genomes improves when using a larger
sketch size. Choosing the sketch size is thus a trade-off between the accuracy of dis-
tance estimation and efficiency. The memory footprint of sketches and the run time of
computing Jaccard or containment are linear in terms of the sketch size. Error bounds
decrease with relation to an exponential of the sketch size [30, 45]. For the distance
accuracy, as the initial growing stage of sketch size, the distance estimation accuracy
increases a lot. But as the sketch size grows further, the distance estimation accuracy
increases slightly. RabbitTClust uses a sketch size of 1000 by default, which is a good bal-
ance between accuracy and efficiency in most cases.

The sketch size is in proportion with the genome length for the variable-sized sketch
of containment coefficient. The variable sketch size is computed as |S| = L · P , where L is
the specific genome length and P is the sample proportion. The default sampling propor-
tion Pd is computed as Pd = 1000/La , where the La is the average genome length (aver-
age sketch size is 1000). The sketch size and sample proportion can also be specified by
-s and -c options, respectively.

Distance threshold

For clust-mst, the time consumption of generating clusters from the MST is negligible;
i.e., its runtime changes little with different thresholds. However, for clust-greedy the
distance threshold dramatically influences the number of pairwise distance computa-
tions; i.e., a smaller distance threshold will generate fewer redundant genomes and more

(5)k =
⌈

log|�| (L(1− q)/q)
⌉

Page 17 of 20Xu et al. Genome Biology (2023) 24:121 	

clusters. More clusters in turn results in more pairwise distances computation. Thus,
runtime of clust-greedy increases with a lower distance threshold.

The MinHash algorithm is a kind of LSH (Locality Sensitive Hashing) with high esti-
mation accuracy for highly similar elements but is less accurate for dissimilar elements
[30]. To achieve high cluster accuracy, the distance threshold cannot be too large. With
the default sketch size of 1000, the recommended distance threshold should be less than
0.1 with an acceptable distance estimated error. A larger sketch size should be used for
higher distance thresholds.

For clustering at the species rank of prokaryotic genomes, the 0.05 distance thresh-
old is used as recommended in Mash and fastANI. Our evaluation shows that clust-mst
achieves the best performance on the Bacteria dataset with a distance threshold around
of 0.05 (see Fig. 7).

For clust-greedy, the distance measurement is AAF distance corresponding to con-
tainment similarity. Different thresholds correspond to different degrees of redundancy.
Users can choose different thresholds to filter out various degrees of redundancy by the
option of -d.

RabbitTClust determines a valid range of distance thresholds by the k-mer size accom-
panied with sketch size (for Mash distance) or sampling proportion (for AAF distance).
For Mash distance, consider the k-mer size k and sketch size S. The minimum scale
interval of Jaccard index is computed by Jm = 1/S , and the maximum distance threshold
is determined by dmax = − 1

k
ln

2jm
1+jm

 . For AAF distance, consider the k-mer size k, mini-
mum genome length Lm and sampling proportion P. For variable sketch sizes, the upper
bound of the minimum scale interval of containment coefficient is computed as
Cm = 1/(Lm · P) . The maximum recommended distance threshold is then determined
by dmax = − 1

k
lnCm . The chosen distance threshold should be less than the dmax in

order to generate the clusters in a valid range.

Fig. 7  Evaluation of distance threshold with different sketch sizes for clust-mst on bact-RefSeq dataset (s100
in the figure means the sketch size is 100)

Page 18 of 20Xu et al. Genome Biology (2023) 24:121

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​02961-6.

Additional file 1: Figure S1. The performance evaluation of RabbitTClust on a 64-core Intel workstation.

Additional file 2: Table S1. The list of the complete RefSeq bacteria genomes with repetitive nucleotide content.

Additional file 3: Table S2. The list of the species-taxid and best-match-species-taxid of the impurity genomes.

Additional file 4: Table S3. The list of impurity genomes with different taxid in genus and family rank.

Additional file 5: Review history.

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team.

Review history
The review history is available as Additional file 5.

Authors’ contributions
Z.Y. and W.L. designed and supervised this study. X.X. codesigned this study,developed the software, and performed the
analyses. L.Y., H.Z., and B.X. helped to perform the experiment analyses. W.Y., B.N., W.L., and B.S. performed the analyses.
X.X., Z.Y., W.L., and B.S. wrote the manuscript. All authors read and approved the final manuscript.

Authors’ Twitter handles
Twitter handles: @xiaomingxu530 (Xiaoming Xu).

Funding
This work is partially supported by NSFC Grants 61972231, 62102231; Shandong Provincial Natural Science Foundation
(ZR2021QF089); Engineering Research Center of Digital Media Technology, Ministry of Education, China.

Availability of data and materials
The evaluation of RabbitTClust performance on an Intel workstation is available in Additional file 1.
 The genome lists filtered as redundant genome are available in Additional file 2, 3, and 4.
 The bact-RefSeq and bact-GenBank datasets are available in https://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​refseq/ and https://​
ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​genba​nk/.
 The download scripts of the bact-RefSeq and bact-GenBank datasets are available in https://​github.​com/​Rabbi​tBio/​
Rabbi​tTClu​st/​tree/​main/​bench​mark/​downl​oad.
 The benchmarking scripts to get the purity and NMI are available in https://​github.​com/​Rabbi​tBio/​Rabbi​tTClu​st/​tree/​
main/​bench​mark/​evalu​ation.
 All experiments in this manuscript are run using RabbitTClust v.2.0.0. RabbitTClust is freely available from https://​github.​
com/​Rabbi​tBio/​Rabbi​tTClu​st [44] under a three-clause BSD license. RabbitTClust is also available at zenodo with DOI:
https://​doi.​org/​10.​5281/​zenodo.​78520​98 [46].
 RabbitTClust is written in C++ and has been tested on 64-bit Linux Systems.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 14 October 2022 Accepted: 5 May 2023

References
	1.	 Li W, Fu L, Niu B, Wu S, Wooley J. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinforma.

2012;13(6):656–68.
	2.	 Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic

genomes reveals clear species boundaries. Nature Comm. 2018;9(1):1–8.
	3.	 Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. GenBank. Nucleic Acids Res. 2019;47(D1):D94–9.
	4.	 Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics.

2012;28(23):3150–2.

https://doi.org/10.1186/s13059-023-02961-6
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
https://ftp.ncbi.nlm.nih.gov/genomes/genbank/
https://ftp.ncbi.nlm.nih.gov/genomes/genbank/
https://github.com/RabbitBio/RabbitTClust/tree/main/benchmark/download
https://github.com/RabbitBio/RabbitTClust/tree/main/benchmark/download
https://github.com/RabbitBio/RabbitTClust/tree/main/benchmark/evaluation
https://github.com/RabbitBio/RabbitTClust/tree/main/benchmark/evaluation
https://github.com/RabbitBio/RabbitTClust
https://github.com/RabbitBio/RabbitTClust
https://doi.org/10.5281/zenodo.7852098

Page 19 of 20Xu et al. Genome Biology (2023) 24:121 	

	5.	 Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1.
	6.	 Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of

two proteins. J Mol Biol. 1970;48(3):443–53.
	7.	 Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.
	8.	 Zielezinski A, Vinga S, Almeida J, Karlowski WM. Alignment-free sequence comparison: benefits, applications, and tools.

Genome Biol. 2017;18(1):1–17.
	9.	 Rowe WP. When the levee breaks: a practical guide to sketching algorithms for processing the flood of genomic data.

Genome Biol. 2019;20(1):1–12.
	10.	 Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome

distance estimation using MinHash. Genome Biol. 2016;17(1):1–14.
	11.	 Li W, Jaroszewski L, Godzik A. Clustering of highly homologous sequences to reduce the size of large protein databases.

Bioinformatics. 2001;17(3):282–3.
	12.	 James BT, Luczak BB, Girgis HZ. MeShClust: an intelligent tool for clustering DNA sequences. Nucleic Acids Res.

2018;46(14):e83–e83.
	13.	 Jain C, Dilthey A, Koren S, Aluru S, Phillippy AM. A fast approximate algorithm for mapping long reads to large reference

databases. In: International Conference on Research in Computational Molecular Biology. Cham: Springer; 2017. p.
66–81.

	14.	 Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB, et al. Mash Screen: high-throughput sequence contain-
ment estimation for genome discovery. Genome Biol. 2019;20(1):232. https://​doi.​org/​10.​1186/​s13059-​019-​1841-x.

	15.	 Zhang H, Chang Q, Yin Z, Xu X, Wei Y, Schmidt B, et al. RabbitV: fast detection of viruses and microorganisms in sequenc-
ing data on multi-core architectures. Bioinformatics. 2022;38(10):2932–3.

	16.	 Chen S, He C, Li Y, Li Z, Melançon CE III. A computational toolset for rapid identification of SARS-CoV-2, other viruses and
microorganisms from sequencing data. Brief Bioinforma. 2021;22(2):924–35.

	17.	 Murray CS, Gao Y, Wu M. Re-evaluating the evidence for a universal genetic boundary among microbial species. Nat
Commun. 2021;12(1):4059. https://​doi.​org/​10.​1038/​s41467-​021-​24128-2.

	18.	 Rodriguez-R LM, Jain C, Conrad RE, Aluru S, Konstantinidis KT. Reply to:“Re-evaluating the evidence for a universal
genetic boundary among microbial species’’. Nat Commun. 2021;12(1):1–7.

	19.	 Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nat Commun. 2018;9(1):1–8.
	20.	 Li R, He X, Dai C, Zhu H, Lang X, Chen W, et al. Gclust: A Parallel Clustering Tool for Microbial Genomic Data. Genomics

Proteomics Bioinforma. 2019;17(5):496–502.
	21.	 Girgis HZ. MeShClust v3. 0: High-quality clustering of DNA sequences using the mean shift algorithm and alignment-

free identity scores. BMC Genomics. 2022;23(1):1–16.
	22.	 Xu Y, Olman V, Xu D. Minimum Spanning Trees for Gene Expression Data Clustering. Genome Informat. 2001;12:24–33.

https://​doi.​org/​10.​11234/​gi1990.​12.​24.
	23.	 O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI:

current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–45.
	24.	 Kitts PA, Church DM, Thibaud-Nissen F, Choi J, Hem V, Sapojnikov V, et al. Assembly: a resource for assembled genomes

at NCBI. Nucleic Acids Res. 2016;44(D1):D73–80.
	25.	 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-Source, Platform-

Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl Environ
Microbiol. 2009;75(23):7537–41. https://​doi.​org/​10.​1128/​AEM.​01541-​09.

	26.	 Zhang H, Song H, Xu X, Chang Q, Wang M, Wei Y, et al. RabbitFX: Efficient Framework for FASTA/Q File Parsing on Mod-
ern Multi-Core Platforms. IEEE/ACM Trans Comput Biol Bioinforma. 2022.

	27.	 Klib: a Generic Library in C. https://​github.​com/​attra​ctive​chaos/​klib. Accessed 11 Oct 2022.
	28.	 RabbitSketch: Fast sketch library for DNA or normal sequence data. https://​github.​com/​Rabbi​tBio/​Rabbi​tSket​ch.

Accessed 11 Oct 2022.
	29.	 Marçais G, Solomon B, Patro R, Kingsford C. Sketching and sublinear data structures in genomics. Ann Rev Biomed Data

Sci. 2019;2:93–118.
	30.	 Koslicki D, Zabeti H. Improving minhash via the containment index with applications to metagenomic analysis. Appl

Math Comput. 2019;354:206–15.
	31.	 Fofanov Y, Luo Y, Katili C, Wang J, Belosludtsev Y, Powdrill T, et al. How independent are the appearances of n-mers in

different genomes? Bioinformatics. 2004;20(15):2421–8.
	32.	 Yi H, Lin Y, Lin C, Jin W. Kssd: sequence dimensionality reduction by k-mer substring space sampling enables real-time

large-scale datasets analysis. Genome Biol. 2021;22(1):1–20.
	33.	 Fan H, Ives AR, Surget-Groba Y, Cannon CH. An assembly and alignment-free method of phylogeny reconstruction from

next-generation sequencing data. BMC Genomics. 2015;16(1):1–18.
	34.	 Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K, Turner S, et al. Using average nucleotide identity to improve taxonomic

assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol. 2018;68(7):2386.
	35.	 Sahlin K. Effective sequence similarity detection with strobemers. Genome Res. 2021;31(11):2080–94.
	36.	 SMHasher. https://​github.​com/​aappl​eby/​smhas​her. Accessed 11 Oct 2022.
	37.	 Yin Z, Xu X, Zhang J, Wei Y, Schmidt B, Liu W. RabbitMash: accelerating hash-based genome analysis on modern multi-

core architectures. Bioinformatics. 2021;37(6):873–5.
	38.	 Broder AZ. On the resemblance and containment of documents. In: Proceedings. Compression and Complexity of

SEQUENCES 1997 (Cat. No. 97TB100171). Salerno: IEEE; 1997. p. 21–29.
	39.	 Lattanzi S, Moseley B, Suri S, Vassilvitskii S. Filtering: a method for solving graph problems in mapreduce. In: Proc. ACM

Symposium on Parallelism in Algorithms and Architectures. New York: Association for Computing Machinery; 2011. p.
85–94.

	40.	 Lončar V, Škrbić S, Balaž A. Parallelization of Minimum Spanning Tree Algorithms Using Distributed Memory Architec-
tures. In: Transactions on Engineering Technologies. Dordrecht: Springer; 2014. p.543-554.

	41.	 Ros F, Guillaume S. A hierarchical clustering algorithm and an improvement of the single linkage criterion to deal with
noise. Exp Syst Appl. 2019;128:96–108.

https://doi.org/10.1186/s13059-019-1841-x
https://doi.org/10.1038/s41467-021-24128-2
https://doi.org/10.11234/gi1990.12.24
https://doi.org/10.1128/AEM.01541-09
https://github.com/attractivechaos/klib
https://github.com/RabbitBio/RabbitSketch
https://github.com/aappleby/smhasher

Page 20 of 20Xu et al. Genome Biology (2023) 24:121

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	42.	 Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge: Cambridge University Press;
2008.

	43.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. J Mach
Learn Res. 2011;12(85):2825–30.

	44.	 RabbitTClust: enabling fast clustering analysis of millions bacteria genomes with MinHash sketches. https://​github.​com/​
Rabbi​tBio/​Rabbi​tTClu​st. Accessed 11 Oct 2022.

	45.	 Criscuolo A. On the transformation of MinHash-based uncorrected distances into proper evolutionary distances for
phylogenetic inference. F1000Res. 2020;9,1309.

	46.	 Xu X, Yin Z, Yan L, Zhang H, Xu B, Wei Y, et al. RabbitTClust: enabling fast clustering analysis of millions bacteria genomes
with MinHash sketches. Zenodo; 2023. https://​doi.​org/​10.​5281/​zenodo.​78520​98.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/RabbitBio/RabbitTClust
https://github.com/RabbitBio/RabbitTClust
https://doi.org/10.5281/zenodo.7852098

	RabbitTClust: enabling fast clustering analysis of millions of bacteria genomes with MinHash sketches
	Abstract
	Background
	Results
	Performance comparison
	Efficiency and scalability
	Distance measurement accuracy
	Clustering accuracy
	Filtering redundant genomes

	Discussion
	Conclusions
	Methods
	RabbitTClust pipeline
	Sketching and distance measurement
	Minimum spanning tree for single-linkage hierarchical clustering
	Benchmarking clustering accuracy
	Parameters
	k-mer size
	Sketch size
	Distance threshold

	Anchor 21
	References

